Skip to main content

Convolutional Neural Networks for Planting System Detection of Olive Groves

  • Chapter
  • First Online:
Innovations in Machine and Deep Learning

Abstract

The present chapter is focused on the identification of different planting systems in olive groves by using very high-resolution aerial orthophotographs through Deep Learning Convolutional Neural Networks techniques. Thus, the DL network proposed classified and discriminated accurately the traditional, intensive and super-intensive management systems. As a starting point in the process, a mini-crop level analysis was performed. To increase the number of standardized samples of the Data Training, a segmentation technique was used to divide the crop images into sub-images (mini-crops), considering different thresholds and stride sizes. These sub-images were discriminated efficiently with accuracies higher than 0.8, showing the biggest image (H = 120 px, W = 120 px) the highest average accuracy (0.957). The super-intensive and traditional managements displayed the most accurate classifications for most of the sub-image sizes. However, major difficulties were found when trying to discriminate intensive systems, with a high degree of confusion with traditional management. Finally, a farm level analysis was also carried out to predict the planting pattern of the entire plantation by identifying the most frequent class of its sub-images. Slightly lower results were observed at farm level, were the image size H = 80 px, W = 80 px obtained the highest accuracy value of 0.826.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loumou, A., Giourga, C.: Olive groves: “The life and identity of the Mediterranean.” Agric. Hum. Values 20, 87–95 (2003). https://doi.org/10.1023/A:1022444005336

    Article  Google Scholar 

  2. FAOSTAT. Food and Agriculture Organization of the United Nations. FAO; (2023). https://www.fao.org/faostat/en/#data/QCL. Accessed 19 April 2023

  3. Fernández-Escobar, R., De la Rosa, R., Leon, L., Gomez, J.A., Testi, L., Orgaz, F., Gil Ribes, J.A., Quesada-Moraga, E., Trapero, A.: Evolution and sustainability of the olive production systems. Options Mediterraneennes. 106, 11–42 (2013)

    Google Scholar 

  4. Mairech, H., Lopez-Bernal, A., Moriondo, M., Dibari, C., Regni, L., Proietti, P., Villalobos, F.J., Testi, L.: Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan. Agric. Syst. 181, 102816 (2020). https://doi.org/10.1016/j.agsy.2020.102816

    Article  Google Scholar 

  5. Stroosnijder, L., Mansinho, M.I., Palese, A.M.: OLIVERO: the project analysing the future of olive production systems on sloping land in the Mediterranean basin. J. Environ. Manag. 89, 75–85 (2008). https://doi.org/10.1016/j.jenvman.2007.05.025

    Article  Google Scholar 

  6. Subsecretaría de Agricultura, Pesca y Alimentación (2019) Encuesta sobre Superficies y Rendimientos de Cultivos. Análisis de Plantaciones de Olivar en España (Survey of Surfaces and Crop Yields. Analysis of Olive Groves in Spain). [Internet] Ministry of Agriculture, Fisheries and Food: Spain, (2019). https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/olivar2019_tcm30-122331.pdf. Accessed 19 April 2023

  7. Guerrero-Casado, J., Carpio, A.J., Tortosa, F.S., Villanueva, A.J.: Environmental challenges of intensive woody crops: the case of super high-density olive groves. Sci. Total Environ. 798, 149212 (2021). https://doi.org/10.1016/j.scitotenv.2021.149212

    Article  Google Scholar 

  8. Massaccesi, L., De Feudis, M., Agnelli, A.E., Nasini, L., Regni, L., D’ascoli, R., Castaldi, S., Proietti, P., Agnelli, A.: Organic carbon pools and storage in the soil of olive groves of different age. Eur. J. Soil Sci. 69, 843–855 (2018). https://doi.org/10.1111/ejss.12677

    Article  Google Scholar 

  9. Lopez-Bellido, P.J., Lopez-Bellido, L., Fernandez-Garcia, P., Muñoz-Romero, V., Lopez-Bellido, F.J.: Assessment of carbon sequestration and the carbon footprint in olive groves in Southern Spain. Carbon Manag. 7, 161–170 (2016). https://doi.org/10.1080/17583004.2016.1213126

    Article  Google Scholar 

  10. Proietti, S., Sdringola, P., Regni, L., Evangelisti, N., Brunori, A., Ilarioni, L., Nasini, L., Proietti, P.: Extra virgin olive oil as carbon negative product: experimental analysis and validation of results. J. Clean. Prod. 166, 550–562 (2017). https://doi.org/10.1016/j.jclepro.2017.07.230

    Article  Google Scholar 

  11. lo Bianco, R., Proietti, P., Regni, L., Caruso, T.: Planting systems for modern olive growing: Strengths and weaknesses. Agriculture (Switzerland) 11 (2021). https://doi.org/10.3390/agriculture11060494

  12. Council of Europe Landscape Convention. Council of Europe Landscape Convention (2023). https://www.coe.int/en/web/landscape. Accessed 19 April 2023

  13. European Commission. The new common agricultural policy: 2023–27 Official website of the European Union (2023). https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/new-cap-2023-27_en. Accessed 19 April 2023

  14. Gómez, J.A., Montero, A.S., Guzmán, G., Soriano, M.A.: In-depth analysis of soil management and farmers’ perceptions of related risks in two olive grove areas in southern Spain. Int. Soil Water Conserv. Res. 9, 461–473 (2021). https://doi.org/10.1016/j.iswcr.2021.01.003

    Article  Google Scholar 

  15. Guzmán, G., Boumahdi, A., Gómez, J.A.: Expansion of olive orchards and their impact on the cultivation and landscape through a case study in the countryside of Cordoba (Spain). Land Use Policy 116, 106065 (2022). https://doi.org/10.1016/j.landusepol.2022.106065

    Article  Google Scholar 

  16. Assirelli, A., Romano, E., Bisaglia, C., Lodolini, E.M., Neri, D., Brambilla, M.: Canopy index evaluation for precision management in an intensive olive orchard. Sustainability (Switzerland) (2021). https://doi.org/10.3390/su13158266

  17. Illana Rico, S., Martínez Gila, D.M., Cano Marchal, P., Gómez Ortega, J.: Automatic Detection of olive tree canopies for groves with thick plant cover on the ground. Sensors 22 (2022). https://doi.org/10.3390/s22166219

  18. Carreira, V.D.S., Tedesco, D., Carreira, A.D.S., da Silva, R.P.: Assessing intra-row spacing using image processing: a promising digital tool for smallholder farmers. Agronomy 12 (2022). https://doi.org/10.3390/agronomy12020301

  19. Fraga, H., Moriondo, M., Leolini, L., Santos, J.A.: Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11, 56 (2021). https://doi.org/10.3390/agronomy11010056

    Article  Google Scholar 

  20. Morelli, M., García-Madero, J.M., Jos, Á., Saldarelli, P., Dongiovanni, C., Kovacova, M., Saponari, M., Baños Arjona, A., Hackl, E., Webb, S., Compant, S.: Xylella fastidiosa in olive: a review of control attempts and current management. Microorganisms 9, 1771 (2021). https://doi.org/10.3390/microorganisms9081771

    Article  Google Scholar 

  21. Roma, E., Catania, P.: Precision oliviculture: research topics, challenges, and opportunities-a review. Remote Sens. (Basel) 14, 1668 (2022). https://doi.org/10.3390/rs14071668

  22. Anastasiou, E., Balafoutis, A.T., Fountas, S.: Trends in remote sensing technologies in olive cultivation. Smart Agric. Technol. 3, 100103 (2023). https://doi.org/10.1016/j.atech.2022.100103

  23. Sishodia, R.P., Ray, R.L., Singh, S.K.: Applications of remote sensing in precision agriculture: a review. Remote Sens. (Basel) 12, 1–31 (2020). https://doi.org/10.3390/rs12193136

    Article  Google Scholar 

  24. Travlos, I., Mikroulis, A., Anastasiou, E., Fountas, S., Bilalis, D., Tsiropoulos, Z., Balafoutis, A.: The use of RGB cameras in defining crop development in legumes. Adv. Anim. Biosci. 8, 224–228 (2017). https://doi.org/10.1017/s2040470017000498

    Article  Google Scholar 

  25. Minhui, L., Shamshiri, R.R., Schirrmann, M., Weltzien, C.: Impact of camera viewing angle for estimating leaf parameters of wheat plants from 3d point clouds. Agriculture (Switzerland) 11 (2021). https://doi.org/10.3390/agriculture11060563

  26. Fu, Z., Jiang, J., Gao, Y., Krienke, B., Wang, M., Zhong, K., Cao, Q., Tian, Y., Zhu, Y., Cao, W., Liu, X.: Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle. Remote Sens. (Basel) 12 (2020). https://doi.org/10.3390/rs12030508

  27. Zhang, A., Hu, S., Zhang, X., Li, M., Tao, H., Hou, Y.: A handheld grassland vegetation monitoring system based on multispectral imaging. Agriculture (Switzerland) 11 (2021). https://doi.org/10.3390/agriculture11121262

  28. Zarco-Tejada, P.J., Ustin, S.L., Whiting, M.L.: Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron. J. 97, 641–653 (2005). https://doi.org/10.2134/agronj2003.0257

    Article  Google Scholar 

  29. Marang, I.J., Filippi, P., Weaver, T.B., Evans, B.J., Whelan, B.M., Bishop, T.F., Murad, M.O.F., Al-Shammari, D., Roth, G.: Machine learning optimised hyperspectral remote sensing retrieves cotton nitrogen status. Remote Sens. (Basel) 13. (2021). https://doi.org/10.3390/rs13081428

  30. Giménez-Gallego, J., González-Teruel, J.D., Soto-Valles, F., Jiménez-Buendía, M., Navarro-Hellín, H., Torres-Sanchez, R.: Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature. Comput. Electron. Agric. 188 (2021). https://doi.org/10.1016/j.compag.2021.106319

  31. Vagelas, I., Papadimos, A., Lykas, C.: Pre-symptomatic disease detection in the vine, chrysanthemum, and rose leaves with a low-cost infrared sensor. Agronomy 11 (2021). https://doi.org/10.3390/agronomy11091682

  32. Khabbazan, S., Vermunt, P., Steele-Dunne, S., Ratering Arntz, L., Marinetti, C., van der Valk, D., Iannini, L., Molijn, R., Westerdijk, K., van der Sande, C.: Crop monitoring using sentinel-1 data: a case study from The Netherlands. Remote Sens. (Basel) 11 (2019). https://doi.org/10.3390/rs11161887

  33. Fieuzal, R., Baup, F., Marais-Sicre, C.: Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—from temporal signatures to crop parameters estimation. Adv. Remote. Sens. 02, 162–180 (2013). https://doi.org/10.4236/ars.2013.22020

    Article  Google Scholar 

  34. Moreno, H., Valero, C., Bengochea-Guevara, J.M., Ribeiro, Á., Garrido-Izard, M., Andújar, D.: On-ground vineyard reconstruction using a LiDAR-based automated system. Sensors (Switzerland) 20 (2020). https://doi.org/10.3390/s20041102

  35. Yuan, W., Li, J., Bhatta, M., Shi, Y., Baenziger, P.S., Ge, Y.: Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors (Switzerland) 18 (2018). https://doi.org/10.3390/s18113731

  36. Weiss, M., Jacob, F., Duveiller, G.: Remote sensing for agricultural applications: a meta-review. Remote. Sens. Environ. 236 (2020). https://doi.org/10.1016/j.rse.2019.111402

  37. Gonzalez, J., Galindo, C., Arevalo, V., Ambrosio, G.: Applying image analysis and probabilistic techniques for counting olive trees in high-resolution satellite images. In: Advanced Concepts for Intelligent Vision Systems (ACIVS’2007), vol. 1, pp. 920–931 (2007). https://doi.org/10.1007/978-3-540-74607-2_84

  38. Solano, F., di Fazio, S., Modica, G.: A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards. Int. J. Appl. Earth Obs. Geoinformation 83 (2019). https://doi.org/10.1016/j.jag.2019.101912

  39. Lin, C., Jin, Z., Mulla, D., Ghosh, R., Guan, K., Kumar, V., Cai, Y.: Toward large-scale mapping of tree crops with high-resolution satellite imagery and deep learning algorithms: a case study of olive orchards in Morocco. Remote Sens. (Basel) 13 (2021). https://doi.org/10.3390/rs13091740

  40. Kurucu, Y., Esetlili, T., Erden, H., Öztürk, G., Güven, A.I., Çamaşircioʇlu, E.: Digitalization of olive trees by using remote sensing techniques. In: 4th International Conference on Agro-Geoinformatics, Agro-Geoinformatics; vol. 1, pp. 121–124 (2015) https://doi.org/10.1109/Agro-Geoinformatics.2015.7248143

  41. Castillejo-González, I.L.: Mapping of olive trees using pansharpened Quickbird images: an evaluation of pixel- and object-based analyses. Agronomy 8 (2018). https://doi.org/10.3390/agronomy8120288

  42. Jiménez-Brenes, F.M., López-Granados, F., De Castro, A.I., Torres-Sánchez, J., Serrano, N., Peña, J.M.: Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods 13 (2017). https://doi.org/10.1186/s13007-017-0205-3

  43. Modica, G., Messina, G., De Luca, G., Fiozzo, V., Praticò, S.: Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput. Electron. Agric. 175 (2020). https://doi.org/10.1016/j.compag.2020.105500

  44. Safonova, A., Guirado, E., Maglinets, Y., Alcaraz-Segura, D., Tabik, S.: Olive tree biovolume from UAV multi-resolution image segmentation with mask R-CNN. Sensors 21, 1–17 (2021). https://doi.org/10.3390/s21051617

    Article  Google Scholar 

  45. Lima-Cueto, F.J., Blanco-Sepúlveda, R., Gómez-Moreno, M.L., Galacho-Jiménez, F.B.: Using vegetation indices and a UAV imaging platform to quantify the density of vegetation ground cover in olive groves (Olea Europaea L.) in Southern Spain. Remote Sens. (Basel) 11 (2019). https://doi.org/10.3390/rs11212564

  46. AlMahamid, F., Grolinger, K.: Autonomous unmanned aerial vehicle navigation using reinforcement learning: a systematic review. Eng. Appl. Artif. Intell. 115 (2022). https://doi.org/10.1016/j.engappai.2022.105321

  47. Instituto Geográfico Nacional. Centro descargas PNOA. Instituto Geográfico Nacional (National Geographic Institute). 2023. https://centrodedescargas.cnig.es/CentroDescargas/index.jsp. Accessed 19 Apr 2023

  48. Zhang, N., Wang, M., Wang, N.: Precision agriculture - a worldwide overview. Comput. Electron. Agric. 113–132 (2002). https://doi.org/10.1016/S0168-1699(02)00096-0

  49. Tilman, D., Balzer, C., Hill, J., Befort, B.L.: Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. U.S.A. 108, 20260–20264 (2011). https://doi.org/10.1073/pnas.1116437108

    Article  Google Scholar 

  50. Fukase, E., Martin, W.: Economic growth, convergence, and world food demand and supply. World Dev. 132 (2020). https://doi.org/10.1016/j.worlddev.2020.104954

  51. Jiang, W., He, G., Long, T., Ni, Y.: Detecting water bodies in Landsat8 OLI image using deep learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 42, 669–672 (2018). https://doi.org/10.5194/isprs-archives-XLII-3-669-2018

    Article  Google Scholar 

  52. Castillejo-González, I.L., Angueira, C., García-Ferrer, A., Orden, M.S.: Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina. ISPRS Int. J. Geo-Inf. 8 (2019). https://doi.org/10.3390/ijgi8030132

  53. Eide, A., Koparan, C., Zhang, Y., Ostlie, M., Howatt, K., Sun, X.: UAV-assisted thermal infrared and multispectral imaging of weed canopies for glyphosate resistance detection. Remote Sens. (Basel) 13 (2021). https://doi.org/10.3390/rs13224606

  54. Kumar, M., Singh, P., Singh, P.: Machine learning and GIS-RS-based algorithms for mapping the groundwater potentiality in the Bundelkhand region, India. Ecol. Inform. 74 (2023). https://doi.org/10.1016/j.ecoinf.2023.101980

  55. da Silva Andrea, M.C., de Oliveira Nascimento, J.P.F., Mota, F.C.M., de Souza Oliveira, R.: Predictive framework of plant height in commercial cotton fields using a remote sensing and machine learning approach. Smart Agric. Technol. 4 (2023). https://doi.org/10.1016/j.atech.2022.100154

  56. Wang, S., Han, Y., Chen, J., He, X., Zhang, Z., Liu, X., Zhang, K.: Weed density extraction based on few-shot learning through UAV remote sensing RGB and multispectral images in ecological irrigation area. Front. Plant Sci. 12 (2022). https://doi.org/10.3389/FPLS.2021.735230

  57. Luo, K., Lu, L., Xie, Y., Chen, F., Yin, F., Li, Q.: Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning. Comput. Electron. Agric. 205 (2023). https://doi.org/10.1016/j.compag.2022.107577

  58. El-Kenawy, E.S.M., Khodadadi, N., Mirjalili, S., Makarovskikh, T., Abotaleb, M., Karim, F.K., Khafaga, D.S.: Metaheuristic optimization for improving weed detection in wheat images captured by drones. Mathematics 10 (2022). https://doi.org/10.3390/math10234421

  59. Consejería de Agricultura, Pesca, Agua y Desarrollo Rural. Descarga de información geográfica SIGPAC. Consejería de Agricultura, Pesca, Agua y Desarrollo Rural (Regional Ministry of Agriculture, Fisheries, Water and Rural Development) (2023). https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/servicios/sigpac/visor/paginas/sigpac-descarga-informacion-geografica-shapes-provincias.html. Accessed 19 Apr 2023

  60. Martínez-Ruedas, C., Guerrero-Ginel, J.E., Fernández-Ahumada, E.: Methodology for the automatic inventory of olive groves at the plot and polygon level. Agronomy 12 (2022). https://doi.org/10.3390/agronomy12081735

  61. Open Geospatial Consortium. Web Map Service. Open Geospatial Consortium; (2023). https://www.ogc.org/standards/wmss . Accessed 19 Apr 2023

  62. Instituto Geográfico Nacional. Servicios de Visualización y Descarga. Instituto Geográfico Nacional (National Geographic Institute) (2023). https://www.ign.es/web/ign/portal/ide-area-nodo-ide-ign. Accessed 19 Apr 2023

  63. Martínez‐Ruedas, C., Guerrero-Ginel, J.E., Fernández-Ahumada, E.: A methodology for automatic identification of units with ecological significance in Dehesa ecosystems. Forest 13 (2022). https://doi.org/10.3390/f13040581

  64. Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris, F.C.: Survey of image denoising techniques. Proc. GSPX 1, 27–30 (2004). https://doi.org/10.5120/9288-3488

    Article  Google Scholar 

  65. Naveen, S., Aiswarya, V.A.: Image denoising by Fourier block processing and Wiener filtering. Procedia Comput. Sci. 58, 683–690 (2015). https://doi.org/10.1016/J.PROCS.2015.08.088

    Article  Google Scholar 

  66. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29, 100–132 (1985). https://doi.org/10.1016/S0734-189X(85)90153-7

    Article  Google Scholar 

  67. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26, 1277–1294 (1993). https://doi.org/10.1016/0031-3203(93)90135-J

    Article  Google Scholar 

  68. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28, 823–870 (2007). https://doi.org/10.1080/01431160600746456

    Article  Google Scholar 

  69. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1, 770–778 (2016). https://doi.org/10.1109/cvpr.2016.90

    Article  Google Scholar 

  70. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  71. Smith, L.N.: Cyclical learning rates for training neural networks. In: Proceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, vol. 1, pp. 464–472. (2017). https://doi.org/10.1109/wacv.2017.58

  72. Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks using large learning rates. In: Proceedings of SPIE - the International Society for Optical Engineering, vol. 11006 (2019). https://doi.org/10.1117/12.2520589

  73. Institut national de l’information géographique et forestière (IGN) Visualisation cartographique - Géoportail Institut national de l’information géographique et forestière; (2023). https://www.geoportail.gouv.fr/carte. Accessed 19 Apr 2023

  74. U.S. Department of Agriculture (USDA). GPFARM (Great Plains Framework for Agricultural Resource Management) U.S. Department of Agriculture (USDA) (2023). https://data.nal.usda.gov/dataset/gpfarm. Accessed 19 Apr 2023

  75. Fernández-Lobato, L., García-Ruiz, R., Jurado, F., Vera, D.: Life cycle assessment, C footprint and carbon balance of virgin olive oils production from traditional and intensive olive groves in southern Spain. J. Environ. Manag. 293 (2021). https://doi.org/10.1016/j.jenvman.2021.112951

  76. Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q.: Deep learning for remote sensing image classification: a survey. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 8, e1264 (2018). https://doi.org/10.1002/widm.1264

  77. Martínez-Ruedas, C., Yanes-Luis, S., Díaz-Cabrera, J.M., Gutiérrez-Reina, D., Linares-Burgos, R., Castillejo-González, I.L.: Detection of planting systems in olive groves based on open-source, high-resolution images and convolutional neural networks. Agronomy 2, 2700 (2022). https://doi.org/10.3390/agronomy12112700

    Article  Google Scholar 

  78. Rivera, G., Porras, R., Florencia, R., Sánchez-Solís, J.P.: LiDAR applications in precision agriculture for cultivating crops: a review of recent advances. Comput. Electron. Agric. 207, 107737 (2023). https://doi.org/10.1016/j.compag.2023.107737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Luisa Castillejo-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Ruedas, C., Yanes Luis, S., Díaz-Cabrera, J.M., Gutiérrez Reina, D., Galvín, A.P., Castillejo-González, I.L. (2023). Convolutional Neural Networks for Planting System Detection of Olive Groves. In: Rivera, G., Rosete, A., Dorronsoro, B., Rangel-Valdez, N. (eds) Innovations in Machine and Deep Learning. Studies in Big Data, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-40688-1_17

Download citation

Publish with us

Policies and ethics