Skip to main content
Log in

Application of remote sensing to identify adult plant resistance loci to stripe rust in two bread wheat mapping populations

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Phenotyping of wheat stripe rust in genetic studies has traditionally relied on quantifying disease by means of the modified Cobb Scale. This approach requires scoring of disease severity and response type, either on flag leaves or on a whole plot basis. The use of spectral crop sensors in wheat phenotyping has raised the question of whether this objective methodology is suitable for detecting stripe rust resistance loci in genetic studies. An Avocet S X Francolin#1 recombinant inbred population developed at the International Maize and Wheat Improvement Center (Centro Internacional de Mejoramiento de Maiz y Trigo—acronym CIMMYT), and a Kariega X Avocet S doubled haploid population developed in South Africa, both with available genetic maps, were used in this study. Field trials for stripe rust evaluation of these populations were planted at Greytown, South Africa in 2013 and 2014. Severe and uniformly distributed infection of Puccinia striiformis race 6E22A+ occurred in both years. Populations and parents were phenotyped according to the modified Cobb Scale and with a handheld Trimble GreenSeeker® crop sensor (model HCS-100). The sensing device emits red and infrared light and measures the reflectance of each wavelength in terms of the normalized difference vegetation index (NDVI). In both years, NDVI detected four previously characterized quantitative trait loci (QTL) on chromosomes 1BL, 2BS, 3BS and 6AL in the Avocet S X Francolin#1 population. The same QTL were detected with visual estimates in 2013 but only 2BS was significant in 2014. In the Kariega X Avocet S population, all stripe rust traits, including NDVI, mapped to previously described QTL on chromosomes 2BS, 4AL and 7DS. Remote sensing of infection levels thus consistently detected the same QTL regions as described by using visual ratings in earlier studies, indicating that a crop sensor can be easily applied in genetic mapping of stripe rust resistance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agenbag, G. M., Pretorius, Z. A., Boyd, L. A., Bender, C. M., MacCormack, R., & Prins, R. (2014). High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega. Molecular Breeding, 34, 2005–2020.

    Article  CAS  Google Scholar 

  • Agenbag, G. M., Pretorius, Z. A., Boyd, L. A., Bender, C. M., & Prins, R. (2012). Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. Theoretical and Applied Genetics, 125, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Atzberger, C. (2013). Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sensing, 5, 949–981.

    Article  Google Scholar 

  • Bock, C. H., El Jarroudi, M., Kouadio, L. A., Mackels, C., Chiang, K.-S., & Delfosse, P. (2015). Disease severity estimates: Effects of rater accuracy and assessment methods for comparing treatments. Plant Disease, 99, 1104–1112.

    Article  Google Scholar 

  • Bravo, C., Moshou, M., West, J., McCartney, A., & Ramon, H. (2003). Early disease detection in wheat fields using spectral reflectance. Biosystems Engineering, 84, 137–145.

    Article  Google Scholar 

  • Chen, W., Wellings, C., Chen, X., Kang, Z., & Liu, T. (2014). Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 15, 433–446.

    Article  PubMed  Google Scholar 

  • CIMMYT. (2005). Laboratory protocols: CIMMYT applied molecular genetics laboratory (3rd ed.). Mexico: CIMMYT.

    Google Scholar 

  • Cooper, M., Messina, C. D., Podlich, D., Radu Totir, L., Baumgarten, A., Hausmann, N. J., et al. (2014). Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop and Pasture Science, 65, 311–336.

    Article  CAS  Google Scholar 

  • Doerge, R. W., & Churchill, G. A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics, 142, 285–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franke, J., & Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture, 8, 161–172.

    Article  Google Scholar 

  • Hansen, J. G. (1991). Use of multispectral radiometry in wheat yellow rust experiments. EPPO Bulletin, 21, 651–658.

    Article  Google Scholar 

  • Hintze, J. (2007). NCSS user’s guide III: Regression and curve fitting. Kaysville: NCSS Statistical System.

    Google Scholar 

  • Hovmøller, M. S., Yahyaoui, A. H., Milus, E. A., & Justesen, A. F. (2008). Rapid global spread of two aggressive strains of a wheat rust fungus. Molecular Ecology, 17, 3818–3826.

    Article  PubMed  Google Scholar 

  • Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., & Wang, J. (2007). Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187–197.

    Article  Google Scholar 

  • Huang, W., Luo, J., Zhang, J., Zhao, J., Zhao, C., Wang, J., et al. (2012). Crop disease and pest monitoring by remote sensing. In: Remote sensing: Applications, edited by B. Escalante Ramirez (Intech Publishers, Rijeka, Croatia, 31–75. Last accessed Feb 19, 2015 http://www.intechopen.com/books/remote-sensing-applications.

  • Hubbard, A., Lewis, C. M., Yoshida, K., Ramirez-Gonzales, R. H., De Vallavieille-Pope, C., Thomas, J., et al. (2015). Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biology, 16, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuska, M., Wahabzada, M., Leucker, M., Dehne, H.-W., Kersting, K., Oerke, E.-C., et al. (2015). Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogenic interactions. Plant Methods, 11, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagudah, E. S., McFadden, H., Singh, R. P., Huerta-Espino, J., Bariana, H. S., & Spielmeyer, W. (2006). Molecular genetic characterisation of the Lr34/Yr18 slow rusting gene region in wheat. Theoretical and Applied Genetics, 114, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Lan, C., Rosewarne, G. M., Singh, R. P., Herrera-Foessel, S. A., Huerta-Espino, J., Basnet, B. R., et al. (2014a). QTL identification of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Molecular Breeding, 34, 789–803.

    Article  CAS  Google Scholar 

  • Lan, C., Singh, R. P., Huerta-Espino, J., Calvo-Salazar, V., & Herrera-Foessel, S. A. (2014b). Genetic analysis of resistance to leaf rust and stripe rust in wheat cultivar Francolin#1. Plant Disease, 98, 1227–1234.

    Article  Google Scholar 

  • Leucker, M., Mahlein, A.-K., Steiner, U., & Oerke, E.-C. (2015). Improvement of lesion phenotyping in Cercospora beticola-sugar beet interaction by hyperspectral imaging. Phytopathology, 106, 177–184.

    Article  PubMed  Google Scholar 

  • Mago, R., Bariana, H. S., Dundas, I. S., Spielmeyer, W., Lawrence, G. J., Pryor, A. J., et al. (2005). Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics, 111, 496–504.

    Article  CAS  PubMed  Google Scholar 

  • Mahlein, A.-K. (2016). Plant disease detection by imaging sensors: parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease, 100, 241–251.

    Article  Google Scholar 

  • McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: An atlas of resistance genes (p. 200). Dordecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Meng, L., Li, H. H., Zhang, L. Y., & Wang, J. K. (2015). QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.

    Article  Google Scholar 

  • Milus, E. A., Kristensen, K., & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology, 99, 89–94.

    Article  PubMed  Google Scholar 

  • Moran, M. S., Inou, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61, 319–346.

    Article  Google Scholar 

  • Moshou, D., Barvo, C., West, J., Wahlen, S., McCartney, A., & Ramon, H. (2004). Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 44, 173–188.

    Article  Google Scholar 

  • Pask, A., Pietragella, J., Mullan, D., & Reynolds, M. P. (Eds.). (2012). Physiological breeding II: A field guide to wheat phenotyping (p. 132). Mexico: CIMMYT.

    Google Scholar 

  • Peterson, R. F., Campbell, A. B., & Hannah, A. E. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26(C), 496–500.

    Article  Google Scholar 

  • Pietragalla, J., & Madrigal Vega, A. (2012). Normalized difference vegetation index. In A. Pask, J. Pietragella, D. Mullan, & M. P. Reynolds (Eds.), Physiological breeding II: A field guide to wheat phenotyping (pp. 37–40). Mexico: CIMMYT.

    Google Scholar 

  • Prins, R., Pretorius, Z. A., Bender, C. M., & Lehmensiek, A. (2011). QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega x Avocetdoubled haploid wheat population. Molecular Breeding, 27, 259–270.

    Article  Google Scholar 

  • Prins, R., Ramburan, V. P., Pretorius, Z. A., Boyd, L. A., Boshoff, W. H. P., Smith, P. H., et al. (2005). Development of a doubled haploid mapping population and linkage map for the bread wheat cross Kariega X Avocet S. South African Journal of Plant and Soil, 22, 1–8.

    Article  CAS  Google Scholar 

  • Ramburan, V. P., Pretorius, Z. A., Louw, J. H., Boyd, L. A., Smith, P. A., Boshoff, W. H. P., et al. (2004). A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theoretical and Applied Genetics, 108, 1426–1433.

    Article  CAS  PubMed  Google Scholar 

  • Rembold, F., Atzberger, C., Savin, I., & Rojas, O. (2013). Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sensing, 5, 1703–1733.

    Google Scholar 

  • Rosewarne, G. M., Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Lan, C. X., & He, Z. H. (2013). Quantitative trait loci of stripe rust resistance in wheat. Theoretical and Applied Genetics, 126, 2427–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, E. L., Perry, C. R., Scharen, A. L., Boatwright, G. O., Sands, D. C., Lautenschlager, L. F., et al. (1985). Monitoring cereal rust development with a spectral radiometer. Phytopathology, 75, 936–939.

    Article  Google Scholar 

  • Soria-Ruiz, J., Fernandes-Ordonez, Y., & McNairn, H. (2009). Corn monitoring and crop yield using optical and microwave remote sensing.In: Geoscience and Remote Sensing, edited by P-G P. Ho, (Intech Publishers, Rijeka, Croatia), 405–419. Last accessed February 19, 2015, http://www.intechopen.com/books/geoscience-and-remote-sensing.

  • Voorrips, R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Basten, C.J., & Zeng, Z-B. (2012). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA. Last accessed February 2, 2015 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.

  • Wellings, C. R. (2007). Puccinia striiformis in Australia: A review of the incursion, evolution and adaptation of stripe rust in the period 1979–2006. Australian Journal of Agricultural Research, 58, 567–575.

    Article  Google Scholar 

  • Wellings, C. R. (2011). Global status of stripe rust: a review of historical and current threats. Euphytica, 179, 129–141.

    Article  Google Scholar 

  • West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D., & McCartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual review of Phytopathology, 41, 593–614.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Huang, L., Huang, W., Zhang, D., Yuan, L., Zhang, J., et al. (2014). Hyperspectral measurements of severity of stripe rust on individual wheat leaves. European Journal of Plant Pathology, 139, 401–411.

    Article  Google Scholar 

Download references

Acknowledgments

The Winter Cereal Trust (South Africa) is acknowledged for funding (project WCT/W/2004/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Pretorius.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pretorius, Z.A., Lan, C.X., Prins, R. et al. Application of remote sensing to identify adult plant resistance loci to stripe rust in two bread wheat mapping populations. Precision Agric 18, 411–428 (2017). https://doi.org/10.1007/s11119-016-9461-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9461-x

Keywords

Navigation