Skip to main content
Log in

Evaluation of an algorithm for automatic detection of broad-leaved weeds in spring cereals

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Lack of automatic weed detection tools has hampered the adoption of site-specific weed control in cereals. An initial object-oriented algorithm for the automatic detection of broad-leaved weeds in cereals developed by SINTEF ICT (Oslo, Norway) was evaluated. The algorithm (“WeedFinder”) estimates total density and cover of broad-leaved weed seedlings in cereal fields from near-ground red–green–blue images. The ability of “WeedFinder” to predict ‘spray’/‘no spray’ decisions according to a previously suggested spray decision model for spring cereals was tested with images from two wheat fields sown with the normal row spacing of the region, 0.125 m. Applying the decision model as a simple look-up table, “WeedFinder” gave correct spray decisions in 65–85% of the test images. With discriminant analysis, corresponding mean rates were 84–90%. Future versions of “WeedFinder” must be more accurate and accommodate weed species recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreasen, C., Rudemo, M., & Sevestre, S. (1997). Assessment of weed density at an early stage by use of image processing. Weed Research, 37, 5–18.

    Article  Google Scholar 

  • Anonymous. (2001). Growth stages of mono- and dicotyledonous plants. BBCH Monograph. Edited by U. Meier, Federal Biological Research Centre for Agriculture and Forestry. http://www.bba.de/veroeff/bbch/bbcheng.pdf. Accessed 5 May 2007.

  • Biller, R. H. (1998). Reduced input of herbicide by use of optoelectronic sensors. Journal of Agricultural Engineering Research, 71, 357–362.

    Article  Google Scholar 

  • Blasco, J., Benlloch, J.V., Agusti, M., & Moltó, E. (1999). Machine vision for precise control of weeds. In G. E. Meyer & J. A. DeShazer (Eds.), Proceedings of the SPIE Conference on Precision Agriculture and Biological Quality Vol. 3543 (pp. 336–343). Boston, USA: SPIE.

  • Brown, R. B., & Noble, S. D. (2005). Site-specific weed management: Sensing requirements-what do we need to see? Weed Science, 53, 252–258.

    Article  CAS  Google Scholar 

  • Burks, T. F., Shearer, S. A., Heath, J. R., & Donohue, K. D. (2005). Evaluation of neural-network classifiers for weed species discrimination. Biosystems Engineering, 91, 293–304.

    Article  Google Scholar 

  • Christensen, S. (1994). Crop weed competition and herbicide performance in cereal species and varieties. Weed Research, 34, 29–36.

    Article  Google Scholar 

  • Clausen, S., Nicolas, S., Kirkhus, T., & Fykse, H. (2000). Automatic weed mapping in cereal fields using image processing techniques. In I. Solheim (Ed.), Proceedings: en samling artikler og sammendrag fra NOBIM konferansen 2000 (pp. 1–5). Ås, Norway: NOBIM 2000-sekretariatet (ISBN 82-7747-108-4).

  • Dammer, K.-H., & Wartenberg, G. (2007). Sensor-based weed detection and application of variable herbicide rates in real-time. Crop Protection, 26, 270–277.

    Article  Google Scholar 

  • Dicke, D., Gerhards, R., Büchse, A., & Hurle, K. (2007). Modelling spatial and temporal dynamics of Chenopodium album L. under the influence of site-specific weed control. Crop Protection, 26, 206–211.

    Article  Google Scholar 

  • Dieleman, J. A., & Mortensen, D. A. (1999). Characterizing the spatial pattern of Abutilon theophrasti seedling patches. Weed Research, 39, 455–467.

    Article  Google Scholar 

  • Fykse, H. (1991). Skadetersklar for ugras i vårkorn (Damage thresholds for weeds in spring cereal). In Faginfo 2/Statens fagtjeneste for landbruket (pp. 165–173). Ås, Norway: Statens fagtjeneste for landbruket (ISSN 0803-2173).

  • Gée, C., Bossu, J., Jones, G., & Truchetet, F. (2008). Crop/weed discrimination in perspective agronomic images. Computers and Electronics in Agriculture, 60, 49–59.

    Article  Google Scholar 

  • Gerhards, R., & Kühbauch, W. (1993). Dynamic decision model for weed control methods in cereals by means of digital image analysis. Journal of Agronomy and Crop Science, 171, 329–335.

    Article  Google Scholar 

  • Gerhards, R., Nabout, A., Sökefeld, M., Kühbauch, W., & Nour Eldin, H. A. (1993). Automatic identification of 10 weed species in digital images using Fourier descriptors and shape parameters. Journal of Agronomy and Crop Science, 171, 321–328.

    Article  Google Scholar 

  • Gerhards, R., & Oebel, H. (2006). Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Research, 46, 185–193.

    Article  Google Scholar 

  • Hague, T., Tillett, N. D., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 7, 21–32.

    Article  Google Scholar 

  • Heijting, S., Van der Werf, W., Kruijer, W., & Stein, A. (2007). Testing the spatial significance of weed patterns in arable land using Mead’s test. Weed Research, 47, 396–405.

    Article  Google Scholar 

  • Håkansson, S. (2003). Weeds and weed management on arable land: An ecological approach. Wallingford, Oxon, UK: CABI Publishing.

    Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. Upper Saddle River, New Jersey, USA: Prentice Hall.

    Google Scholar 

  • Lamb, D. W., & Brown, R. B. (2001). Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research, 78, 117–125.

    Article  Google Scholar 

  • Lutman, P. J. W., & Miller, P. C. H. (2007). Spatially variable herbicide application technology; opportunities for herbicide minimisation and protection of beneficial weeds. HGCA Research Review No. 62. UK: The Home-Grown Cereals Authority.

  • Meyer, G. E., Mehta, T., Kocher, M. F., Mortensen, D. A., & Samal, A. (1998). Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Transactions of the ASAE, 41, 1189–1197.

    Google Scholar 

  • Ngouajio, M., Leroux, G. D., & Lemieux, C. (1999). A flexible sigmoidal model relating crop yield to weed relative leaf cover and its comparison with nested models. Weed Research, 39, 329–343.

    Article  Google Scholar 

  • Nordmeyer, H. (2006). Patchy weed distribution and site-specific weed control in winter cereals. Precision Agriculture, 7, 219–231.

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Pedersen, B. B., Hansen, P. K., & Walter, A. M. (2002). Weed density estimation from digital images. In H. H. van Laar (Ed.), Proceedings of the 12th European Weed Research Society Symposium (pp. 416–417). Doorwerth, The Netherlands: EWRS Bookstore.

  • Pérez, A. J., López, F., Benlloch, J. V., & Christensen, S. (2000). Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture, 25, 197–212.

    Article  Google Scholar 

  • Ribeiro, A., Fernandez-Quintanilla, C., Barroso, J., & Garcia-Alegre, M. C. (2005). Development of an image analysis system for estimation of weed pressure. In J. V. Stafford (Ed.), Precision Agriculture ’05 (pp. 169–174). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • SAS Institute. (2007). SAS/STAT version 9.1, Cary, North Carolina, USA.

  • Sui, R., Thomasson, J. A., Hanks, J., & Wooten, J. (2008). Ground-based sensing system for weed mapping in cotton. Computers and Electronics in Agriculture, 60, 31–38.

    Article  Google Scholar 

  • Søgaard, H. T. (2005). Weed classification by active shape models. Biosystems Engineering, 91, 271–281.

    Article  Google Scholar 

  • Tellaeche, A., BurgosArtizzu, X. P., Pajares, G., Ribeiro, A., & Fernández-Quintanilla, C. (2008). A new vision-based approach to differential spraying in precision agriculture. Computers and Electronics in Agriculture, 60, 144–155.

    Article  Google Scholar 

  • Wiles, L. (2005). Sampling to make maps for site-specific weed management. Weed Science, 53, 228–235.

    Article  CAS  Google Scholar 

  • Young, D. L., Kwon, T. J., Smith, E. G., & Young, F. L. (2003). Site-specific herbicide decision model to maximize profit in winter wheat. Precision Agriculture, 4, 227–238.

    Article  Google Scholar 

  • Zwiggelaar, R. (1998). A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Protection, 17, 189–206.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Norwegian Institute of Agricultural and Environmental Research (BIOFORSK). We thank M. Helgheim, BIOFORSK, for help with the true values of weed density in part of the evaluation dataset. The authors also thank S. Clausen, T. Kirkhus and K. Kaspersen, SINTEF ICT (Oslo, Norway), for support with the programs “WeedFinder” and “Ground Truth”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Berge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berge, T.W., Aastveit, A.H. & Fykse, H. Evaluation of an algorithm for automatic detection of broad-leaved weeds in spring cereals. Precision Agric 9, 391–405 (2008). https://doi.org/10.1007/s11119-008-9083-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-008-9083-z

Keywords

Navigation