Skip to main content

Advertisement

Log in

Agricultural robots—system analysis and economic feasibility

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This paper focuses on the economic feasibility of applying autonomous robotic vehicles compared to conventional systems in three different applications: robotic weeding in high value crops (particularly sugar beet), crop scouting in cereals and grass cutting on golf courses. The comparison was based on a systems analysis and an individual economic feasibility study for each of the three applications. The results showed that in all three scenarios, the robotic applications are more economically feasible than the conventional systems. The high cost of real time kinematics Global Positioning System (RTK-GPS) and the small capacity of the vehicles are the main parameters that increase the cost of the robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astrand B, Baerveldt AJ (2002) An agricultural mobile robot with vision-based perception for mechanical weed control. Auton robot 13:21–35

    Article  Google Scholar 

  • Bak T, Jakobsen H (2004) Agricultural robotic platform with four wheel steering for weed detection. Biosyst Eng 87(2):125–136

    Article  Google Scholar 

  • Billingsley J (2000) Automatic guidance of agricultural mobiles at the NCEA. Industrial Robot 27(6):449–457

    Article  Google Scholar 

  • Birrel SJ, Hummel JW (2001) Real-time multi ISFET/FIA soil analysis system with automatic sample extraction. Comput Electron Agr 32:45–67

    Article  Google Scholar 

  • Bisgaard M, Vinther D, Østergaard KZ (2004) Modelling and fault-tolerant control of an autonomous wheeled robot group report 04gr1030a. Denmark, Institute of Control Engineering Aalborg University

    Google Scholar 

  • Blackmore S, Griepentrog HW (2002) A future view of precision farming. In: Berger D, Bornheimer A, Jarfe A, Kottenrodt D, Richter R, Stahl K, Werner A (eds) PreAgro: Proceedings of the PreAgro precision agriculture conference (pp 131–145) Muncheberg, Germany: Center for agricultural landscape and land use research – ZALF

  • Blackmore S, Fountas S, Tang L, Have H (2004a) Design specifications for a small autonomous tractor with behavioural control. J Int Comm Agric Eng (CIGR). Manuscript PM 04 001. vol. 6 July 2004

  • Blackmore S, Fountas S, Vougioukas S, Tang L, Sørensen CG, Jørgensen R (2004b) Decomposition of agricultural tasks into robotic behaviours. J Int Comm Agric Eng (CIGR). Accepted

  • Burks TF, Shearer SA, Heath JR, Donohue KD (2005) Evaluation of neural-network classifiers for weed species discrimination. Biosyst Eng 91(3):293–304

    Article  Google Scholar 

  • Dansk Landbrugsrådgivning (2004a) Håndbog til driftsplanlægning. Handbook for farm management, Landbrugsforlaget (in English). Skejby, Denmark

    Google Scholar 

  • Dansk Landbrugsrådgivning (2004b) Budgetkalkyler for 2004. Budget and gross margin calculations for danish cropping systems (in English). Skejby, Denmark

    Google Scholar 

  • Freyberger F, Jahns G (2000) Symbolic course description for semiautonomous agricultural vehicles. Comput Electron Agr 25:121–132

    Article  Google Scholar 

  • Gaglia E (2004) Importance of herbicide concentration, number of roplets and droplet size on growth of Solanum nigrum l, using droplet application of glyphosate. In: Proceedings of the XIIeme colloque international sur la biologie des mauvaises herbes. Dijon, 31 August–2 September 2004 (INRA)

  • Godwin RJ, Miller PCH (2003) A review of the technologies for mapping within-field variability. Biosyst Eng 84(4):393–407

    Article  Google Scholar 

  • Goense D (2003) The economics of autonomous vehicles. In: Proceedings of the VDI-MEG conference on agricultural engineering, VDI-Tatung Landtechnic,Hannover, Germany, 7–8 November, 2003

  • Griepentrog HW, Christensen S, Søgaard H, Norremark M, Lund I, Graglia E (2004) Robotic weeding. In: EurAgEng04: Leuven, Belgium, 12–16 September 2004. European society of agricultural engineers, paper 392

  • Have H (2004) Effects of automation on sizes and costs of tractor and machinery. In: EurAgEng04: Leuven, Belgium, 12–16 September 2004, European society of agricultural engineers, paper 285

  • Have H, Nielsen J, Blackmore S, Theilby F (2005) Development and test of an autonomous Christmas tree weeder. In: Stafford JV (ed) Proceedings of the fifth European conference on precision agriculture. The Netherlands, Wageningen Academic Publishers, pp629–635

    Google Scholar 

  • Heisel T, Christensen S, Walter AM (1999) Whole-field experiments with site-specific weed management. In: Stafford JV (ed) Proceedings of the second European conference on precision agriculture part 2. Sheffield UK, Sheffield Academic Press, pp759–768

    Google Scholar 

  • Hoffman M (1991) Machine vision for row crop sensing. M.Sc. thesis. Bedfordshire, UK: Cranfield University at Silsoe

  • Hollingum J (1999) Robots in agriculture. Ind Robot 26(6):438–445

    Article  Google Scholar 

  • Kondo N, Ting KC (1998) Robotics for bioproduction systems – St. Joseph, MI, USA: ASAE

  • Lee WS, Slaughter DC, Giles DK (1999). Robotic weed control system for tomatoes. Precis Agr 1:95–113

    Article  Google Scholar 

  • Madsen TE, Jakobsen HL (2001) Mobile robot for weeding. MSc. Thesis. Lynby, Denmark: Danish Technical University

  • Manh AG, Rabatel G, Assemat L, Aldon MJ (2001). Weed leaf image segmentation by deformable templates. J Agr Eng Res 80(2):139–146

    Article  Google Scholar 

  • Marchant JA, Hague T, Tillett D (1997) Row-following accuracy of an autonomous vision-guided agricultural vehicle. Comput Electron Agr 16:165–175

    Article  Google Scholar 

  • Morland C (2002) Autonomous lawnmower control. Report No. 98060792. Department of cognitive and neural systems, Boston University, USA

  • Norremark M, Griepentrog HW (2004) Physical methods to control weeds within crop rows. In: EurAgEng04: Leuven, Belgium, 12–16 September 2004, European society of agricultural engineers, paper 405

  • Pedersen SM (2003) Precision farming – technology assessment of site-specific input application in cereals. Ph.D. dissertation, IPL, Danish Technical University, Lyngby, Denmark

  • Pilarski T, Happold M, Pangels H, Ollis M, Fitzpatrick K, Stentz A (2002). The demeter system for automated harvesting. Auton Robots 13:9–20

    Article  Google Scholar 

  • Shibusawa S, Sato H, Hirako S, Otomo A, Sasao A (2000) A revised soil spectrophotometer. In: Shibusawa S, Monta M, Murase H (eds), Proceedings of the second IFAC/CIGR international workshop on BIO-ROBOTICS II 25–26 November 2000, Osaka, Japan, pp225–230

  • Steinhauser T (1993) Steering a mechanical weeder with intelligent sensing using machine vision. M.Phil thesis. Bedfordshire UK, Cranfield University at Silsoe.

    Google Scholar 

  • Søgaard HT (2005) Weed classification by active shape models. Biosyst Eng 91(3):271–281

    Article  Google Scholar 

  • Søgaard HT, Olsen HJ (2003). Determination of crop rows by image analysis without segmentation. Comput Electron Agr 38:141–158

    Article  Google Scholar 

  • Sørensen CG, Madsen NA, Jacobsen BH (2005) Organic farming scenarios: Operational analysis and costs of implementing innovative technologies. Biosyst Eng 91(2):127–137

    Article  Google Scholar 

  • Sökefeld M, Gerhards R, Kühbauch W (2000) Site-specific weed control – from weed recording to herbicide application. In: Proceedings of the twentieth German conference on weed biology and weed control, University of Hohenheim, Stuttgart–Hohenheim, Germany, 14–16 March, 2000

  • Tillett ND, Hague T, Marchant JA (1998). A robotic system for plant-scale husbandry. J Agr Eng Res 69:169–178

    Article  Google Scholar 

  • Tillett ND, Hague T (1999) Computer-vision-based hoe guidance for cereals - an initial trial. J Agr Eng Res 74:225–236

    Article  Google Scholar 

  • Waine T (1999) Non-invasive soil property measurement for precision farming. Engineering doctor thesis. Bedfordshire, UK: Cranfield University at Silsoe

  • Wilson JN (2000) Guidance of agricultural vehicles – a historical perspective. Comput Electron Agr 25:1–9

    Article  Google Scholar 

  • Wißerodt E, Grimm J, Kemper M, Kielhorn A, Kleine-Hartlage H, Nardmann M, Naescher J, Trautz D (1999) Gesteuerte Hacke zur Beikrautregulierung innerhalb der Reihe von Pflanzenkulturen (Steered hoe for weed control in crop rows). Düsseldorf Germany, VDI-Verlag, pp155–160

    Google Scholar 

  • Vrindts E, De Baerdemaeker J, Ramon H (2002) Weed detection using canopy reflection. Precis Agr 3:63–80

    Article  Google Scholar 

Download references

Acknowledgements

This project is part of the Agrobotics project funded by the Danish Technical Research Council. We appreciate the assistance we received about technical issues from associate professor Hans Werner Griepentrog, KVL, Scientists Ivar Lund, Henning Søgaard, Claus G. Sorensen at DIAS and Green keeper Mette Glarborg, Skjoldenæsholm Golf Club.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, S.M., Fountas, S., Have, H. et al. Agricultural robots—system analysis and economic feasibility. Precision Agric 7, 295–308 (2006). https://doi.org/10.1007/s11119-006-9014-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-006-9014-9

Keywords

Navigation