Skip to main content

Part of the book series: Agriculture Automation and Control ((AGAUCO))

  • 229 Accesses

Abstract

In this chapter, we discuss how robotics is used in precision agriculture for orchards and vineyards to automate and simplify tasks. We focus on the aspects required for a system to function autonomously and less on the actual task. Topics include ways in which platforms track their positions, such as GPS; what types of sensors are generally used on top of location; and how this data is used for decision-making and human safety within the navigation and mobility concept. We also discuss other high-level topics, such as path planning and optimization and fleet management, to explain the necessary aspects that play behind the scenes. Lastly, we present an overview of existing commercial and emerging technologies for applications in orchards and vineyards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aqel, M. O. A., Marhaban, M. H., Saripan, M. I., & Ismail, N. B. (2016). Review of visual odometry: Types, approaches, challenges, and applications. Springerplus, 5, 1897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aspiras, T. H., Ragb, H. K., & Asari, V. K. (2018). Human detection in infrared imagery using intensity distribution, gradient and texture features. In S. S. Agaian & S. A. Jassim (Eds.), Mobile multimedia/image processing, security, and applications 2018 (p. 14). SPIE.

    Chapter  Google Scholar 

  • Azevedo, F., Shinde, P., Santos, L., et al. (2019). Parallelization of a vine trunk detection algorithm for a real time robot localization system. In 19th IEEE international conference on autonomous robot systems and competitions, ICARSC 2019. Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

  • Bac, C. W., van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31, 888–911. https://doi.org/10.1002/rob.21525

    Article  Google Scholar 

  • Barrientos, A., Colorado, J., del Cerro, J., et al. (2011). Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics, 28, 667–689. https://doi.org/10.1002/rob.20403

    Article  Google Scholar 

  • Bengochea-Guevara, J., Conesa-Muñoz, J., Andújar, D., & Ribeiro, A. (2016). Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. Sensors, 16, 276. https://doi.org/10.3390/s16030276

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengochea-Guevara, J. M., Andújar, D., Sanchez-Sardana, F. L., et al. (2018). A low-cost approach to automatically obtain accurate 3D models of woody crops. Sensors (Switzerland), 18, 1–17. https://doi.org/10.3390/s18010030

    Article  Google Scholar 

  • Botterill, T., Paulin, S., Green, R., et al. (2017). A robot system for pruning grape vines. Journal of Field Robotics, 34, 1100–1122. https://doi.org/10.1002/rob.21680

    Article  Google Scholar 

  • Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M., & Pajares, G. (2011). Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75, 337–346. https://doi.org/10.1016/J.COMPAG.2010.12.011

    Article  Google Scholar 

  • Cherubini, A., Passama, R., Crosnier, A., et al. (2016). Collaborative manufacturing with physical human-robot interaction. Robotics and Computer-Integrated Manufacturing, 40, 1–13. https://doi.org/10.1016/j.rcim.2015.12.007

    Article  Google Scholar 

  • Cismas, A., Matei, I., Ciobanu, V., & Casu, G. (2017). Crash detection using IMU sensors. In Proceedings – 2017 21st international conference on control systems and computer, CSCS 2017 (pp. 672–676). Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

  • Comba, L., Biglia, A., Ricauda Aimonino, D., & Gay, P. (2018). Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Computers and Electronics in Agriculture, 155, 84–95. https://doi.org/10.1016/J.COMPAG.2018.10.005

    Article  Google Scholar 

  • Conesa-Muñoz, J., Bengochea-Guevara, J. M., Andujar, D., & Ribeiro, A. (2016a). Route planning for agricultural tasks: A general approach for fleets of autonomous vehicles in site-specific herbicide applications. Computers and Electronics in Agriculture, 127, 204–220. https://doi.org/10.1016/j.compag.2016.06.012

    Article  Google Scholar 

  • Conesa-Muñoz, J., Pajares, G., & Ribeiro, A. (2016b). Mix-opt: A new route operator for optimal coverage path planning for a fleet in an agricultural environment. Expert Systems with Applications, 54, 364–378. https://doi.org/10.1016/j.eswa.2015.12.047

    Article  Google Scholar 

  • Conesa-Muñoz, J., Valente, J., del Cerro, J., et al. (2016c). Integrating autonomous aerial scouting with autonomous ground actuation to reduce chemical pollution on crop soil. Advances in Intelligent Systems and Computing, 418, 41–53. https://doi.org/10.1007/978-3-319-27149-1_4

    Article  Google Scholar 

  • De Ryck, M., Versteyhe, M., & Debrouwere, F. (2020). Automated guided vehicle systems, state-of-the-art control algorithms and techniques. Journal of Manufacturing Systems, 54, 152–173.

    Article  Google Scholar 

  • Digumarti, S. T., Nieto, J., Cadena, C., et al. (2018). Automatic segmentation of tree structure from point cloud data. IEEE Robotics and Automation Letters, 3, 3043–3050. https://doi.org/10.1109/LRA.2018.2849499

    Article  Google Scholar 

  • Doering, D., Benenmann, A., Lerm, R., et al. (2014). Design and optimization of a heterogeneous platform for multiple UAV use in precision agriculture applications. In IFAC proceedings volumes (IFAC-PapersOnline) (pp. 12272–12277). IFAC Secretariat.

    Google Scholar 

  • Franchi, A., Giordano, P. R., Secchi, C., et al. (2011). A passivity-based decentralized approach for the bilateral teleoperation of a group of UAVs with switching topology. In Proceedings – IEEE international conference on robotics and automation (pp. 898–905).

    Google Scholar 

  • French, A. N., Gore, M. A., & Thompson, A. (2016). Cotton phenotyping with lidar from a track-mounted platform (p. 98660B). In J. Valasek & J. A. Thomasson (Eds.). International Society for Optics and Photonics.

    Google Scholar 

  • García-Pérez, L., García-Alegre, M. C., Ribeiro, Á., et al. (2005). Perception and tracking of dynamic objects for optimization of avoidance strategies in autonomous piloting of vehicles (pp. 500–517). Springer.

    Google Scholar 

  • García-Pérez, L., García-Alegre, M. C., Ribeiro, A., & Guinea, D. (2008). An agent of behaviour architecture for unmanned control of a farming vehicle. Computers and Electronics in Agriculture, 60, 39–48. https://doi.org/10.1016/j.compag.2007.06.004

    Article  Google Scholar 

  • Garrido, M., Paraforos, D., Reiser, D., et al. (2015). 3D maize plant reconstruction based on georeferenced overlapping LiDAR point clouds. Remote Sensing, 7, 17077–17096. https://doi.org/10.3390/rs71215870

    Article  Google Scholar 

  • Garrido, M. S., de Lacy, M. C., Ramos, M. I., et al. (2019). Assessing the accuracy of NRTK altimetric positioning for precision agriculture: Test results in an olive grove environment in Southeast Spain. Precision Agriculture, 20, 461–476. https://doi.org/10.1007/s11119-018-9591-4

    Article  Google Scholar 

  • Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., et al. (2017). Fleets of robots for environmentally-safe pest control in agriculture. Precision Agriculture, 18, 574–614. https://doi.org/10.1007/s11119-016-9476-3

    Article  Google Scholar 

  • Gordon, A. G. (1963). The use of ultrasound in agriculture. Ultrasonics, 1, 70–77. https://doi.org/10.1016/0041-624X(63)90057-X

    Article  Google Scholar 

  • Gottschalk, R., Burgos-Artizzu, X. P., Ribeiro, Á., et al. (2008). Real-time image processing for the guidance of a small agricultural field inspection vehicle. In 15th international conference on mechatronics and machine vision in practice M2VIP’08 (pp. 493–498). https://doi.org/10.1109/MMVIP.2008.4749582

  • GRAPE. (2020). Project | GRAPE. http://www.grape-project.eu/project/. Accessed 9 Jan 2020.

  • GUSSAG. (2019). Home – GUSS. http://gussag.com/. Accessed 13 Dec 2019.

  • Hamuda, E., Glavin, M., & Jones, E. (2016). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125, 184–199. https://doi.org/10.1016/J.COMPAG.2016.04.024

    Article  Google Scholar 

  • Hartel, R. W., Mccarthy, M., Peleg, M., et al. (2015). Hyperspectral imaging technology in food and agriculture. Springer.

    Google Scholar 

  • Hemming, J., Van Tuijl, B., Tielen, T., et al. (2018). Trimbot cutting tools and manipulator. In Frontiers in artificial intelligence and applications (pp. 89–93). IOS Press.

    Google Scholar 

  • Howarth, B., Katupitiya, J., Eaton, R., & Kodagoda, S. (2010). A machine learning approach to crop localisation using spatial information. International Journal of Computer Applications in Technology, 39, 101. https://doi.org/10.1504/IJCAT.2010.034737

    Article  Google Scholar 

  • Jiang, Y., Li, C., Takeda, F., et al. (2019). 3D point cloud data to quantitatively characterize size and shape of shrub crops. Horticulture Research, 6, 43. https://doi.org/10.1038/s41438-019-0123-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju, C., & Son, H. (2018). Multiple UAV systems for agricultural applications: control, implementation, and evaluation. Electronics, 7, 162. https://doi.org/10.3390/electronics7090162

    Article  Google Scholar 

  • Kaljaca, D., Vroegindeweij, B., & Henten, E. (2019). Coverage trajectory planning for a bush trimming robot arm. Journal of Field Robotics, 21917. https://doi.org/10.1002/rob.21917

  • Lan, H., Elsheikh, M., Abdelfatah, W., et al. (2019). Integrated RTK/INS navigation for precision agriculture. In Proceedings of the 32nd international technical meeting of the satellite division of the institute of navigation, ION GNSS+ 2019 (pp. 4076–4086). Institute of Navigation.

    Google Scholar 

  • Lopes, C. M., Graça, J., Sastre, J., Reyes, M., Guzmán, R., Braga, R., Monteiro, A., & Pinto, P. A. (2016). Vineyard yield estimation by VINBOT robot-preliminary results with the white variety Viosinho. In G. Jones & N. Doran (Eds.), Proceedings of the 11th International Terroir Congress (pp. 458–463). Southern Oregon University.

    Google Scholar 

  • Mohammadzadeh, A., & Taghavifar, H. (2020). A robust fuzzy control approach for path-following control of autonomous vehicles. Soft Computing, 24, 3223–3235. https://doi.org/10.1007/s00500-019-04082-4

    Article  Google Scholar 

  • Morellos, A., Pantazi, X.-E. E., Moshou, D., et al. (2016). Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering, 152, 104–116. https://doi.org/10.1016/j.biosystemseng.2016.04.018

    Article  Google Scholar 

  • Naïo Technologies. (2020). Autonomous weeding & agricultural robots. Naïo Technologies. https://www.naio-technologies.com/en/. Accessed 14 Jan 2020.

  • Pereira, A., & Althoff, M. (2018). Overapproximative human arm occupancy prediction for collision avoidance. IEEE Transactions on Automation Science and Engineering, 15, 818–831. https://doi.org/10.1109/TASE.2017.2707129

    Article  Google Scholar 

  • Rosell-Polo, J. R., Gregorio, E., Gene, J., et al. (2017). Kinect v2 sensor-based mobile terrestrial laser scanner for agricultural outdoor applications. IEEE/ASME Transactions on Mechatronics, 22, 2420–2427. https://doi.org/10.1109/TMECH.2017.2663436

    Article  Google Scholar 

  • Rye, J. F., & Scott, S. (2017). International labour migration to/in rural Europe: A review of the evidence.

    Google Scholar 

  • SAGA. (2020). SAGA – Swarm robotics for agricultural applications. http://laral.istc.cnr.it/saga/. Accessed 14 Jan 2020.

  • Saiz-Rubio, V., Diago, M. P., Rovira-Más, F., et al. (2018). Physical requirements for vineyard monitoring robots. In C. Ertekin & H. Yilmaz (Eds.), Sustainable life for children (pp. 393–397).

    Google Scholar 

  • Sankey, T., Donager, J., McVay, J., & Sankey, J. B. (2017). UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sensing of Environment, 195, 30–43. https://doi.org/10.1016/j.rse.2017.04.007

    Article  Google Scholar 

  • Si, J., Niu, Y., Lu, J., & Zhang, H. (2019). High-precision estimation of steering angle of agricultural tractors using GPS and low-accuracy MEMS. IEEE Transactions on Vehicular Technology, 68, 11738–11745. https://doi.org/10.1109/TVT.2019.2949298

    Article  Google Scholar 

  • SPARKLE Project Sparkle-Project – Sustainable precision agriculture: Research and knowledge for learning how to be an agri-entrepreneur. http://sparkle-project.eu/. Accessed 14 Jan 2020.

  • Tang, X., Li, C., Wang, X., et al. (2011). A control system of mobile navigation robot for precise spraying based ultrasonic detecting and ARM embedded technologies (p. 80270Z). In M. S. Kim, S.-I. Tu, & K. Chao (Eds.). International Society for Optics and Photonics.

    Google Scholar 

  • Taylor, J. E., Charlton, D., & Yuńez-Naude, A. (2012). The end of farm labor abundance. Applied Economic Perspectives and Policy, 34, 587–598. https://doi.org/10.1093/aepp/pps036

    Article  Google Scholar 

  • TrimBot. (2020). TrimBot2020 Project – Cutting Hedge Research. http://trimbot2020.webhosting.rug.nl/. Accessed 14 Jan 2020.

  • Valbuena, R., Mauro, F., Rodriguez-Solano, R., & Manzanera, J. A. (2010). Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Spanish Journal of Agricultural Research, 8, 1047–1057. https://doi.org/10.5424/sjar/2010084-1242

    Article  Google Scholar 

  • Vasconez, J. P., Kantor, G. A., & Auat Cheein, F. A. (2019). Human–robot interaction in agriculture: A survey and current challenges. Biosystems Engineering, 179, 35–48.

    Article  Google Scholar 

  • Vázquez-Arellano, M., Griepentrog, H. W., Reiser, D., & Paraforos, D. S. (2016). 3-D imaging systems for agricultural applications – A review. Sensors (Basel), 16. https://doi.org/10.3390/s16050618

  • VINBOT. (2019). Project Grant Agreement Number: FP7-SME-2013-2-605630. https://agriciencia.com/index.php/en/vinbot-en. Accessed 13 Dec 2019.

  • VineScout. (2020). VineScout. http://vinescout.eu/web/. Accessed 28 Feb 2020.

  • Vision Robotics Corporation. (2019). VR Grapevine Pruner | visionrobotics. https://www.visionrobotics.com/vr-grapevine-pruner. Accessed 13 Dec 2019.

  • Vitirover Solutions. (2020). Home | Grassing management | Automated Mower Robot | Vitirover. https://www.vitirover.fr/en-home. Accessed 14 Jan 2020.

  • Wabbena, G., Schmitz, M., & Bagge, A. (2005). PPP-RTK: Precise point positioning using state-space representation in RTK networks (pp. 2584–2594).

    Google Scholar 

  • Wang, Z., Li, Z., Wang, L., et al. (2018). Assessment of multiple GNSS real-time SSR products from different analysis centers. ISPRS International Journal of Geo-Information, 7, 85. https://doi.org/10.3390/ijgi7030085

    Article  Google Scholar 

  • Westoby, M. J., Brasington, J., Glasser, N. F., et al. (2012). ‘Structure-from-motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/J.GEOMORPH.2012.08.021

    Article  Google Scholar 

  • Xiong, L., Xia, X., Lu, Y., et al. (2019). IMU-based automated vehicle slip angle and attitude estimation aided by vehicle dynamics. Sensors, 19, 1930. https://doi.org/10.3390/s19081930

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C., Chen, J., Guo, X., et al. (2020). Study on indoor combined positioning method based on TDOA and IMU (Lecture notes in electrical engineering) (pp. 1251–1258). Springer.

    Google Scholar 

  • Yu, K.-Q., Zhao, Y.-R., Li, X.-L., et al. (2014). Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant. PLoS One, 9, e116205. https://doi.org/10.1371/journal.pone.0116205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman, S., Comba, L., Biglia, A., et al. (2019). Cost-effective visual odometry system for vehicle motion control in agricultural environments. Computers and Electronics in Agriculture, 162, 82–94. https://doi.org/10.1016/j.compag.2019.03.037

    Article  Google Scholar 

  • Zhang, D., & Guo, P. (2016). Integrated agriculture water management optimization model for water saving potential analysis. Agricultural Water Management, 170, 5–19. https://doi.org/10.1016/J.AGWAT.2015.11.004

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is partly based on a technological overview written as part of the SPARKLE Project (Erasmus+ program) and the FlexiGroBots project (Grant agreement ID: 101017111), both EU funds. An analysis has been carried out of state-of-the-art robotics within precision agriculture.

Disclaimer

The examples mentioned in this chapter are a portion of the existing technologies aimed to represent the current capabilities with respect to autonomous navigation. The companies or organizations behind these examples have contributed to the analysis other than the information provided in publications. Their mention does not imply endorsement by the authors, nor does absence imply discrimination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karouta, J.J.H., Ribeiro, A. (2023). Autonomous Platforms. In: Vougioukas, S.G., Zhang, Q. (eds) Advanced Automation for Tree Fruit Orchards and Vineyards. Agriculture Automation and Control. Springer, Cham. https://doi.org/10.1007/978-3-031-26941-7_8

Download citation

Publish with us

Policies and ethics