Skip to main content

Advertisement

Log in

Cohesive energy, properties, and formation energy of transition metal alloys

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The cohesive energy of transition metals and its contributions related to the s-and d-electrons are calculated. The correlation of interatomic bonding strength, molar volume, and compressibility of transition metals with cohesion energy and corresponding contributions to it is shown. It is demonstrated that the s-electrons play an important part in the cohesion of transition metals. The main contributions to the formation energy of disordered alloys of copper with transition metals are calculated using the tight-binding approach. The results obtained are in qualitative agreement with experimental data on the thermodynamic properties of Cu-3d-metal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Samsonov, I. F. Prydko, and L. F. Pryadko, Electron Localization in Solids [in Russian], Nauka, Moscow (1976), p. 339.

    Google Scholar 

  2. M. Cyrot M and F. Cyrot-Lackmann, “Energy of formation of binary transitional alloys,” J. Phys. F: Metal Phys., 6, No. 12, 2257–2265 (1976).

    Article  CAS  Google Scholar 

  3. D. G. Pettifor, “Theory of energy bands and related properties of 4d transition metals. III. S and d-contributions to the equation of state,” J. Phys., F8, No. 2, 219–230 (1978).

    Article  Google Scholar 

  4. A. Pasturel, C. Colinet, and P. Hicter, “Heats of formation in transition intermetallic alloys,” Acta Metall., 32, No. 7, 1061–1067 (1984).

    Article  CAS  Google Scholar 

  5. D. G. Pettifor, “On the tight binding theory of the heats of formation,” Sol. State Com., 28, 621–623 (1978).

    Article  CAS  Google Scholar 

  6. W. A. Harrison, Electronic Structure and the Properties of Solids, Freeman, New York, (1980).

    Google Scholar 

  7. J. Friedel, The Physics of Metals, Cambridge University Press, New York (1969), p. 512.

    Google Scholar 

  8. Ya. P. Frenkel’, An Introduction to the Theory of Metals [in Russian], Metallurgizdat, Moscow (1972), p. 424.

    Google Scholar 

  9. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 317–425 (1991).

    Article  CAS  Google Scholar 

  10. J. A. Dean (ed.), Lange’s Handbook of Chemistry, McGraw-Hill, New York (1999), p. 1291.

    Google Scholar 

  11. E. M. Sokolovskaya and L. S. Guzei, Metal Chemistry [in Russian], Izd. Mosk. Univ., Moscow (1986), p. 264.

    Google Scholar 

  12. D. G. Pettifor, “S-and d-contributions to the transition metal equation of state,” in: Proc. Int. Conf. Transit. Metals (Toronto, 1977), Bristol-London (1978), pp. 6–13.

  13. D. G. Pettifor, “Theory of the heats of formation of transition-metal alloys,” Phys. Rev. Lett., 42, No. 13, 846–849 (1979).

    Article  CAS  Google Scholar 

  14. A. Pasturel, P. Hicter, and F. Cyrot-Lackmann, “Heats of formation of binary transition metal alloys,” Sol. State Comm., 48, No. 6, 561–562 (1983).

    Article  CAS  Google Scholar 

  15. M. A. Turchanin, “Enthalpy of formation of liquid alloys of cuprum and 3d-transition metals,” Metally, No. 4, 22–28 (1998).

  16. M. A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. II. The copper-vanadium system,” Powder Metall. Met. Ceram., 45, No. 5–6, 272–278 (2006).

    Article  CAS  Google Scholar 

  17. M. A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. III. Copper-chromium system,” Powder Metall. Met. Ceram., 45, No. 9–10, 457–467 (2006).

    Article  CAS  Google Scholar 

  18. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. IV. Copper-manganese system,” Powder Metall. Met. Ceram., 45, No. 11–12, 569–581 (2006).

    Article  CAS  Google Scholar 

  19. M. A. Turchanin, “Thermodynamics of liquid alloys, and stable and metastable phase equilibria in the copper-iron system,” Powder Metall. Met. Ceram., 40, No. 7–8, 337–353 (2001).

    CAS  Google Scholar 

  20. M. A. Turchanin and P. G. Agraval, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. V. Copper-cobalt system,” Powder Metall. Met. Ceram., 46, No. 1–2, 77–89 (2007).

    Article  CAS  Google Scholar 

  21. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VI. Copper-nickel system,” Powder Metall. Met. Ceram., 46, No. 9–10, 467–477 (2007).

    Article  CAS  Google Scholar 

  22. M. A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. I. The copper-scandium system,” Powder Metall. Met. Ceram., 45, No. 3–4, 143–152 (2006).

    Article  CAS  Google Scholar 

  23. M. A. Turchanin, P. G. Agraval, A. N. Fesenko, and A. R. Abdulov, “Thermodynamics of liquid alloys and metastable phase transformations in the copper-titanium system,” Powder Metall. Met. Ceram., 44, No. 5–6, 259–270 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 47, No. 1–2 (459), pp. 37–54, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchanin, M.A., Agraval, P.G. Cohesive energy, properties, and formation energy of transition metal alloys. Powder Metall Met Ceram 47, 26–39 (2008). https://doi.org/10.1007/s11106-008-0006-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-008-0006-3

Keywords

Navigation