Skip to main content
Log in

Estimation of Enthalpy of Formation of Liquid Transition Metal Alloys: A Modified Prescription Based on Macroscopic Atom Model of Cohesion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The enthalpy of formation Δo H f is an important thermodynamic quantity, which sheds significant light on fundamental cohesive and structural characteristics of an alloy. However, being a difficult one to determine accurately through experiments, simple estimation procedures are often desirable. In the present study, a modified prescription for estimating Δo H Lf of liquid transition metal alloys is outlined, based on the Macroscopic Atom Model of cohesion. This prescription relies on self-consistent estimation of liquid-specific model parameters, namely electronegativity (ϕ L) and bonding electron density (n Lb ). Such unique identification is made through the use of well-established relationships connecting surface tension, compressibility, and molar volume of a metallic liquid with bonding charge density. The electronegativity is obtained through a consistent linear scaling procedure. The preliminary set of values for ϕ L and n Lb , together with other auxiliary model parameters, is subsequently optimized to obtain a good numerical agreement between calculated and experimental values of Δo H Lf for sixty liquid transition metal alloys. It is found that, with few exceptions, the use of liquid-specific model parameters in Macroscopic Atom Model yields a physically consistent methodology for reliable estimation of mixing enthalpies of liquid alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. Kubaschewski, C. B. Alcock and P.J. Spencer, Materials Thermochemistry, 6th ed., Pergamon, London, 1993, pp.1-363.

    Google Scholar 

  2. F. Sommer, J. Th. Anal. Calorim., 1988, Vol. 33, pp 15-28.

    Article  Google Scholar 

  3. S. V. Meschel, O. J. Kleppa, in: J. S. Faulkner and R.G. Jordan (Eds.), Metallic Alloys: Experimental and Theoretical Perspectives, Kluwer Acad. Publ., Dordrecht, 1994, pp.103-112.

    Chapter  Google Scholar 

  4. M. G Frohberg and C. Betz, Berichte der Bunsengesellschaft für physikalische Chemie, 1983, Vol.87, pp.782-785.

    Article  Google Scholar 

  5. G. Cacciamani, G. Borzone and R. Ferro, J. Alloys Comp., 1995, Vol.220, pp.106-110.

    Article  Google Scholar 

  6. O. J. Kleppa, J. Alloys Compd., 2001, Vol.321, pp.153-163.

    Article  Google Scholar 

  7. M. A. Turchanin, Powder Metall. Met. Ceram., 1997, Vol.36, pp.253-257.

    Article  Google Scholar 

  8. H. Flandorfer, M. Rechchach, A. Elmahfoudi, L. Bencze, A. Popovic and H. Ipser, J. Chem. Thermo., 2011, Vol.43, pp.1612-1622.

    Article  Google Scholar 

  9. J. P. Bros, Pure & Appl. Chem., 1992, Vol.64, pp.57-64.

    Article  Google Scholar 

  10. I. Arpshofen, R. Luck, B. Predel and J. F. Smith, J. Phase Equilib., 1991, Vol.12, pp.141-147.

    Article  Google Scholar 

  11. F. Sommer, R. N. Singh and V. Witusiewicz, J. Alloys Compd., 2001, Vol.325, pp.118-128.

    Article  Google Scholar 

  12. T. J. B. Holland, Am. Miner., 1989, Vol.74, pp.5-13.

    Google Scholar 

  13. P. J. Spencer, Thermochim. Acta, 1998, Vol.314, pp.1-21.

    Article  Google Scholar 

  14. A. Benisek and E. Dachs, J. Alloys Compd., 527 (2012) 127-131.

    Article  Google Scholar 

  15. V.T. Witusiewicz and F. Sommer, J. Alloys Compd., 2000, Vol.312, pp.228-237.

    Article  Google Scholar 

  16. V. S. Urosov and I. F. Kravchuk, Cryst. Res. Technol., 1983, Vol.18, pp.629-636.

    Article  Google Scholar 

  17. P. E. A. Turchi, I. A. Abrikosov, B. Burton, S. G. Fries, G. Grimvall, L. Kaufman, P. Korzavyi, V. Manga, M. Ohno, A. Pisch, A. Scott and W. Zhang, Calphad, 2007, Vol.31, pp.4-27

    Article  Google Scholar 

  18. J.L. Moran Lopez, F. Mejia-Lira and J.M. Sanchez (eds.) Structural and Phase Stability of Alloys, Springer, New York, 1992, pp. 1–263.

  19. F. Ducastelle, Order and Phase Stability of Alloys, (Cohesion Structure Series, vol. 3), North-Holland, Amsterdam, 1991, pp. 1–591.

  20. R. E. Watson and M. Weinert, Solid St. Phys., 2001, Vol.56, pp.1-112.

    Google Scholar 

  21. D. G. Pettifor, Phys. Rev. Lett., 1979, Vol.42, pp.846-850.

    Article  Google Scholar 

  22. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1989, pp.1-758.

    Google Scholar 

  23. J. S. Faulkner and R. G. Jordan (Eds.) Metallic Alloys: Experimental and Theoretical Perspective, NATO-ASI Series-E, Vol. 256, Springer, Dordrecht, 1994, pp.1-461.

    Google Scholar 

  24. P. E. A. Turchi and A. Gonis, (Ed.) Statics and Dynamics of Alloy Phase Formation, Plenum Press, New York, 1994, pp.1-733.

    Google Scholar 

  25. W. A. Harrison, Elementary Electronic Structure, World Scientific, Singapore, 2004, pp.1-827.

    Book  Google Scholar 

  26. C. Colinet, Intermetallics, 2003, Vol.11, pp.1095–1102.

    Article  Google Scholar 

  27. J. Hafner, From Hamiltonian to Phase Diagrams: The Electronic and Statistical-Mechanical Theory of sp-Bonded Metals and Alloys, Springer Series in Solid State Sciences, Vol.70, Springer, Berlin, 1987, pp.1-314.

    Google Scholar 

  28. K. Schaefers, J. Qin, M. Rosner-Kuhn and M. G. Frohberg, Can. Met. Quarterly, 1996, Vol.35, pp.47-51.

    Article  Google Scholar 

  29. V. S. Sudavtsova, N. E. Vorkotrib and V. G. Kudin, Powder Metall. Met. Ceram., 2001, Vol.40, pp.516-518.

    Article  Google Scholar 

  30. U. Thiedemann, M. Rosner-Kuhn, D. M. Matson, G. Kuppermann, K. Drewes, M. C. Flemings and M. G. Frohberg, Steel Res., 1998, Vol.69, pp.3-7.

    Google Scholar 

  31. W. Xiong, W. Xie, C. Shen and D. Morgan, J. Nucl. Mater., 2013, Vol.443, pp.331–341.

    Article  Google Scholar 

  32. W. Xiong, W. Xie and D. Morgan, J. Nucl. Mater., 2014, Vol.452, pp.569-577.

    Article  Google Scholar 

  33. A. K. Niessen and A. R. Miedema, The Macroscopic Atom Model: An easy tool to predict thermodynamic quantities, in: H. Brodowsky and H.-J. Schaller (Eds.), Thermochemistry of Alloys, NATO ASI Series, Vol.286, Kluwer Academic Pub., Dordrecht, 1989, pp.29-54.

    Chapter  Google Scholar 

  34. J. A. Alonso and N. H. March, Electrons in Metals and Alloys, Academic Press, London, 1989, pp.1-603.

    Google Scholar 

  35. D. G. Pettifor, Solid St. Phys., 1987, Vol.40, pp.43-92.

    Google Scholar 

  36. C. Colinet, A. Pasturel and P. Hicter, Scripta Metall., 1984, Vol.18, pp.1359-1364.

    Article  Google Scholar 

  37. H. B. Michaelson, J. Appl. Phys. 1977, Vol.48, pp. 4729-4733.

    Article  Google Scholar 

  38. D. Cheng, S. Wang, and H. Ye, Phys. Rev., 2001, Vol. 64, p. 0241071-0241074

    Google Scholar 

  39. R. Hultgren, P. D. Desal, D. T. Hawkins, M. Gleiser, K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Metals Park, Ohio, 1973, pp.1-673

    Google Scholar 

  40. X. Q. Chen and R. Podloucky, Calphad, 2006, Vol.30, pp.266-269.

    Article  Google Scholar 

  41. A. B. Shubin and K. Y. Shunyaev, Rasplavy, 2010, Vol.12, pp.44-50. (in Russian)

    Google Scholar 

  42. H. Yamana, J. Sheng, K. Kawamoto and H. Moriyama, J. Nucl. Mater., 2001, Vol.294, pp.53-58.

    Article  Google Scholar 

  43. J. Neuhausen and B. Eichler, Extension of Miedema’s Macroscopic Atom Model to the Elements of Group 16 (0, S, Se, Te, Po), Paul-Scherrer Inst. Report, PSI Bericht Nr. 03-13, 2003, pp. 1–195.

  44. H. Moriyama, K. Kinoshita and Y. Ito, J. Nucl. Sci. Technol., 1990, Vol.27, pp.827-834.

    Article  Google Scholar 

  45. J. Sheng, J. Mater. Sci. Lett., 2002, Vol.21, pp.1319-1320.

    Article  Google Scholar 

  46. R. F. Zhang and B. X. Liu, Appl. Phys. Lett., 2002, Vol.81, pp.1219-1221.

    Article  Google Scholar 

  47. N. H. March and M. P. Tosi, Introduction to Liquid State Physics, World-Scientific Pub., Singapore, 2002, pp.1-452.

    Book  Google Scholar 

  48. L. Sani, C. Petrillo and F. Sacchetti, Phys. Rev., 2014, Vol.B90. p.0242071-02420716

    Article  Google Scholar 

  49. J. A. Alonso and N. H. March, Surf. Sci., 1985, Vol.160, pp.509-516.

    Article  Google Scholar 

  50. A. R. Miedema and F. van der Woude, Physica, 1980, Vol.100B, pp.145-156.

    Google Scholar 

  51. J. A. Alonso and N. H. March, Phys. Rev., 1999, Vol. E60, pp.4125-4129.

    Article  Google Scholar 

  52. T. Iida and R.I.L. Guthrie, The Thermophysical Properties of Metallic Liquids: Predictive Models, Vol. 2, Oxford University Press, Oxford, 2015, pp.1-335.

    Book  Google Scholar 

  53. T. Iida, R. I. L. Guthrie and N. Tripathi, Metall. Mater. Trans., 2006, Vol.37B, pp.403-412.

    Article  Google Scholar 

  54. K. C. Mills and Y. C. Su, Int. Mater. Rev., 2006, Vol.51, pp.329-351.

    Article  Google Scholar 

  55. B. Keene, Int. Mater. Rev., 1993, Vol.38, pp.157-192.

    Article  Google Scholar 

  56. I. Egry, E. Ricci, R. Novakovic, and S. Ozawa, Adv. Colloid and Interface Sci., 2010, Vol.159, pp.198-212.

    Article  Google Scholar 

  57. I. Yokoyama and S. Naito, J. Less Common Met., 1987, Vol.136, pp.25-29.

    Article  Google Scholar 

  58. Y. B. Kang, Calphad, 2012, Vol.38, pp.100-116.

    Article  Google Scholar 

  59. B. Zhang, S. Liao, H. Xie, X. Yuan and X. Shu, Euro Phys. Lett., 2010, Vol.89, p. 560021-24

    Google Scholar 

  60. J. D. Eshelby, Solid St. Phys., 1956, Vol.3, pp.79-144.

    Google Scholar 

  61. J. Friedel, Adv. Phys., 1954, Vol.3, pp.446-507.

    Article  Google Scholar 

  62. V. A. Lubarda, Mech. Mater., 2003, Vol.35, pp.53-68.

    Article  Google Scholar 

  63. J. R. Wilson, Met. Reviews, 1965, Vol.10, pp.381-590.

    Article  Google Scholar 

  64. M. Shimoji, Liquid Metals: An Introduction to the Physics and Chemistry of Metals in the Liquid State, Academic Press, London, 1977, pp.1-385.

    Google Scholar 

  65. B. J. Lee, Calphad, 1993, Vol.17, pp.151-168.

    Article  Google Scholar 

  66. G. I. Batalin, N. N. Mineko and V. S. Sudavtsova, Russ. Metall., 1974, Vol.5, pp.82-86.

    Google Scholar 

  67. Y. Iguchi, Y. Tozaki, M. Kakizaki, T. Fuwa and S. Ban-Ya, J. Iron Steel Inst. Jpn., 1981, Vol.67, pp.925-932. (in Japanese)

    Google Scholar 

  68. B. Predel and R. Mohs, Arch. Eisenhuttenwes, 1970, Vol.41, pp.143-149.

    Google Scholar 

  69. Yu. O. Esin, M. G. Vaslishev, A. F. Ermakov, P. V. Geld and M. S. Petrshevskii, Izv. Skad. Nauk. SSSR Met., 1981, Vol. 3, pp. 1–12 (in Russian)

  70. G. I. Batalin, V. P. Kurach and V. S. Sudavtsova, Russ. J. Phys. Chem., 1984, Vol.58, pp.289-291.

    Google Scholar 

  71. H. Wang, R. Luck and B. Predel, Z. Metallkd., 1991, Vol.82, pp. 659-665.

    Google Scholar 

  72. U. Thiedemann, J. P. Qin, K. Schaefers, M. Rosner-Kuhn and M. G. Frohberg, ISIJ Int., 1995, Vol.35, pp.1518-1522.

    Article  Google Scholar 

  73. V. S. Sudavtsova, M. O. Shevchenko, V. V. Berezutskii and M. I. Ivanov, Powder Metall. Met. Ceram., 2013, Vol.52, pp.456-464.

    Article  Google Scholar 

  74. V. B. Rajkumar and K. C. Harikumar, Calphad, 2015, Vol.48, pp.157-165.

    Article  Google Scholar 

  75. V.S. Sudavtsova, V.P. Kurach, N.N. Maryanchik and G.I. Batalin, Uzv. Akad. Nauk. SSSR Met., 1989, Vol. 5, pp. 204–05 (in Russian)

  76. A. Jacob, C. Schmetterer, L. Singheiser, A. Gray-Weale, B. Hallstedt and A. Watson, Calphad, 2015, Vol.50, pp.92-104.

    Article  Google Scholar 

  77. S. Kardellas, C. Servant, N. Selhaoui, A. Iddaoudi, M. Ait Amari and L. Bouirden, MATEC Web of Conferences, 2013, Vol.3, p. 010081–86.

  78. P. R. Subramanian and J. F. Smith, Calphad, 1984, Vol.8, pp.295-301.

    Article  Google Scholar 

  79. G. M. Ryss, A. I. Stroganov, Yu. O. Esin and P. V. Geld, Zh. Fiz. Khim., 1976, Vol.50, pp.771-772.

    Google Scholar 

  80. Yu. O. Esin, S. E. Demin and V. V. Litovskii, Russ. J. Phys. Chem., 1985, Vol.59, pp.131-134.

    Google Scholar 

  81. R. Luck, H. Wang and B. Predel, Z. Anorg. Allg. Chem., 1993, Vol.619, pp.447-452.

    Article  Google Scholar 

  82. M.A. Turchanin, I.V. Belokonenko, P.G. Agraval and A.A. Turchanin, in: Progress in Computing Physicochemical Properties, Int. Conf., Proceedings, Warzaw, 1999, pp. 361–70.

  83. Yu. O. Esin, O. Yu. Sidorov, M. G. Valishev, P. V. Geld, M. S. Petrushevskii, High Temp., 1989, Vol. 27, pp. 394–396 (in Russian)

    Google Scholar 

  84. P. G. Agraval, M. A. Turchanin and L. A. Dreval, J. Chem. Thermo., 2015, Vol.86, pp.27-36.

    Article  Google Scholar 

  85. M. A. Turchanin and P. G. Agraval, Powder Metall. Met. Ceram., 2007, Vol.46, pp.77-89.

    Article  Google Scholar 

  86. R. N. Dokken and J. F. Elliott, Trans. Metall. Soc. AIME, 1965, Vol.233, pp.1351-1358.

    Google Scholar 

  87. I. V. Nikolaenko and M. V. Turchanin, Metall. Mater. Trans., 1997, Vol.28B, pp.1119-1130.

    Article  Google Scholar 

  88. Y. A. Odusote, Sci. Tech. Adv. Mater., 2008, Vol. 9, p.0150011-17.

    Google Scholar 

  89. U. Thiedemann, M. Rosner-Kuhn, K. Drewes, G. Kuppermann and M. G. Frohberg, J. Non. Cryst. Solids, 1999, Vol.250-252, pp.329-335.

    Article  Google Scholar 

  90. R. Luck, I. Arpshofen, B. Predel and J. F. Smith, Thermochim. Acta, 1988, Vol.151, pp.171-181.

    Article  Google Scholar 

  91. Yu. O. Esin, M. G. Valishev, A. F. Ermakov, P. V. Geld and M. S. Petrushevskii, Russ. J. Phys. Chem., 1980, Vol.54, pp.1292-1294.

    Google Scholar 

  92. R. M. German and G. R. St. Pierre, Metall. Trans., 1972, Vol.3, pp.2819-2924.

    Article  Google Scholar 

  93. M. Ivanov and V. Berezotski, Int. J. Mater. Res., 2011, Vol.102, pp.277-281.

    Article  Google Scholar 

  94. A. D. Mostafa, A. E. Gheribi, D. Kevoskov, Md. Mezbahul-Islam and M. Medraj, Calphad, 2013, Vol.42, pp.27-37.

    Article  Google Scholar 

  95. K. Santhy and K. C. H. Kumar, J. Alloys Compd., 2015, Vol.619, pp.733-747.

    Article  Google Scholar 

  96. Yu. O. Esin, M. G. Valishev, A. F. Ermakov, P. V. Geld and M. S. Petrushevskii, Russ. J. Phys. Chem., 1981, Vol.55, pp.421-422.

    Google Scholar 

  97. M. A. Turchanin, I. V. Belokonenko and P. G. Agraval, Rasplavy, 2001, Vol. 3, pp. 53-60.

    Google Scholar 

  98. A. B. Shubin, L. F. Yamshchikov, S. P. Raspopin, Izv. Vuz. Tsvetnaya Metallurgia, 1986, Vol.4, pp.73-76.

    Google Scholar 

  99. Yu. O. Esin, M. G. Valishev, P. V. Geld and M. S. Petrushevskii, Russ. J. Phys. Chem., 1980, Vol.54, pp.2267-2270.

    Google Scholar 

  100. P. Nash, H. Choo and R. B. Schwarz, J. Mater. Sci., 1988, Vol.33, pp.4929-4936.

    Article  Google Scholar 

  101. M. A. Turchanin, Powder Metall. Met. Ceram., 2006, Vol.45, pp.143-152.

    Article  Google Scholar 

  102. H. Bo, L. B. Liu and Z. P. Jin, J. Alloys Compd., 2010, Vol.490, pp.318-325.

    Article  Google Scholar 

  103. A. Yakymovych, S. Furtauer, A. Elmahfoudi, H. Ipser and H. Flandorfer, J. Chem. Thermo., 2014, Vol.74, pp.269-285.

    Article  Google Scholar 

  104. R. Luck, J. Tomiska and B. Predel, Z. Metallkd., 1991, Vol.82, pp.944-949.

    Google Scholar 

  105. H. Wang, R. Luck and B. Predel, J. Non Cryst. Solids, 1993, Vol.156-158, pp.388-392.

    Article  Google Scholar 

  106. N. V. Golovata, N. V. Kotova and N. Usenko, French-Ukrainian J. Chem., 2015, Vol.3, pp.21-25.

    Google Scholar 

  107. N. Usenko, M. Ivanov, V. Berezutski and N. Kotova, Int. J. Mater. Res., 2013, Vol.9, pp.849-852.

    Google Scholar 

  108. V. T. Witusiewicz, F. Sommer and E. J. Mittemeijer, Metall. Trans., 2003, Vol.34B, pp.209-223.

    Article  Google Scholar 

  109. V. B. Rajkumar and K. C. Harikumar, J. Alloys Compd., 2014, Vol.611, pp.303-312.

    Article  Google Scholar 

  110. Y. Iguchi, S. Nobori, K. Saito and T. Fuwa, J. Iron Steel Inst. Jpn., 1982, Vol.68, pp.633-640.

    Google Scholar 

  111. W. Z. Huang, Z. Metallkd., 1990, Vol.81, pp.397-404.

    Google Scholar 

  112. K. Schaefers, M. Rosner-Kuhn, J. Qin and M. G. Frohberg, Steel Res., 1995, Vol.66, pp.183-187.

    Google Scholar 

  113. V. T. Witusiewicz, and F. Sommer, Metall. Trans., 2000, Vol.31B, pp.277-284.

    Article  Google Scholar 

  114. M. Rosner-Kuhn, J. Qin, K. Schaefers, U. Thiedemann and M. G. Frohberg, Int. J. Thermophys., 1996, Vol.17, pp.959-966.

    Article  Google Scholar 

  115. A. A. Turchanin, M. A. Turchanin, and I. A. Tomilin, Mat. Sci. Forum, 1989, Vol.269-272, pp.571-576.

    Google Scholar 

  116. O. Yu. Sidorov, Yu. O. Esin and P. V. Geld, Rasplavy, 1988, Vol.3, pp.9-11.

    Google Scholar 

  117. M. A. Turchanin and S. V. Porokhnya, Powder Metall. Met. Ceram., 1996, Vol.35, pp.378-380.

    Article  Google Scholar 

  118. Y.F. Ouyang, X. Zhong, Y. Du, Y. Feng and Y. He, J. Alloys Compd., 2006, Vol.420, pp. 175-181.

    Article  Google Scholar 

  119. N. Wang, T. Jiang, Y. Yang, J. Tan, S. Hu, S. Peng and L. Yan, RSC Adv., 2015, Vol.5, pp.61495-61501.

    Article  Google Scholar 

  120. Z. Cao, K. Wang, G. Du and Z. Qiao, App. Mech. Mater., 2012, Vol.187, pp.272-277.

    Article  Google Scholar 

  121. S. Bajaj, A. Landa, P. Soderlind, P. E. A. Turchi and R. Arroyave, J. Nucl. Mater., 2011, Vol.419, pp177-135.

    Article  Google Scholar 

  122. W. Jianli, T. Biyang, H. Xunpu and L. Zhulin, Adv. Mat. Res., 2013, Vol.821-822, pp.849-853

    Google Scholar 

  123. H. S. Liu, J. Wang, Z. P. Jin, Calphad, 2004, Vol.28, pp.363-370.

    Article  Google Scholar 

  124. R. Luck, J. Tomiska and B. Predel, Z. Metallkd., 1988, Vol.79, pp.345-349.

    Google Scholar 

  125. M. J. Perl, I. Arpshofen, B. Predel and E. Schultheiss, Z. Metallkd., 1979, Vol.70, pp.656-660.

    Google Scholar 

  126. R. Haddard, M. Gaune-Escard, J. P. Bros, A. Havlicek, C. Hayes and K. L. Komarek, J. Alloys Compd., 1997, Vol. 247, pp.82-86.

    Article  Google Scholar 

  127. O. Benes, D. Manara and R. J. M. Konings, J. Nucl. Mater., 2014, Vol.449, pp.15-22.

    Article  Google Scholar 

  128. A. Berche, N. Dupin, G. Gueneau, C. Rado, B. Sundman and J. C. Dumas, J. Nucl. Mater., 2011, Vol.411, pp.131-143.

    Article  Google Scholar 

  129. N. Maruyama and S. Ban-Ya, Trans. Jpn. Inst. Met., 1978, Vol.42, pp.992-998.

    Google Scholar 

  130. J. Tomiska, H. Nowotny, L. Erdelyi and A. Neckel, Ber. Bunsenges Phys. Chem., 1979, Vol.83, pp.135-141.

    Article  Google Scholar 

  131. E. Ichise, K. Shaw and S. Taniguchi, J. Mass Spect. Soc. Jpn., 41 (1993) 343-350.

    Article  Google Scholar 

  132. U. Thiedemann, M. Rosner-Kuhn, K. Drewes, G. Kuppermann, and M. G. Frohberg, Steel Res., 1999, Vol.70, pp.3-8.

    Google Scholar 

  133. P. Franke and D. Neuschutz, in Landolt-Bornstein Series on Thermophysical Properties of Inorganic Materials: Binary System, Part 4, Vol.19 B4, Group IV, Springer, Berlin, 2006, pp. 1–4.

  134. M. A. Turchanin, Powder Metall. Met. Ceram., 2006, Vol.45, pp.457-467.

    Article  Google Scholar 

  135. K. Fitzner, Q. Guo, J. Wang and O. J. Kleppa, J. Alloys Compd., 1999, Vol. 291, pp. 190-200.

    Article  Google Scholar 

  136. Y. Iguchi, Y. Tozaki, M. Kakizaki, S. Ban-Ya and T. Fuwa, Tetsu-to-Hagane, 1977, Vol. 63, pp.953-961. (in Japanese)

    Google Scholar 

  137. U. Saeed, H. Flandorfer, and H. Ipser, J. Mater. Res., 2006, Vol. 21, pp.1294-1304.

    Article  Google Scholar 

  138. S. Halas and T. Durakiewicz, J. Phys. Condens. Matter. 1998, Vol. 10, pp. 10815-26.

    Article  Google Scholar 

  139. O. Olubosede, O. M. Afolabi, R. S. Fayose, E. O. Oniya and A. C. Tomiwa, App. Phys. Res., 2011, Vol. 3, pp.171-178.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. A. K. Bhaduri, Director, Metallurgy and Materials Group, and Dr. S. A. V. Satya Murty, Director, IGCAR, for their kind support and encouragement during the course of this study. One of the authors (S.R) wishes to dedicate this paper to the memory of Professor G. N. K. Iyengar, of the Department of Materials, Indian Institute of Science, Bengaluru, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroja Saibaba.

Additional information

Manuscript submitted February 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, S., Saibaba, S. Estimation of Enthalpy of Formation of Liquid Transition Metal Alloys: A Modified Prescription Based on Macroscopic Atom Model of Cohesion. Metall Mater Trans A 47, 4741–4759 (2016). https://doi.org/10.1007/s11661-016-3620-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3620-6

Keywords

Navigation