Skip to main content
Log in

Cohesive Properties of Cu-X and Ni-X (In, Sn) Intermetallics: Ab Initio Systematics, Correlations and “Universality” Features

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

This paper reports an analysis of the systematics of cohesive properties and equation-of-state parameters for a large number of stable, metastable and hypothetical binary MeaXb type phases formed by Me = Cu, Ni with X = In, Sn. To this aim, an ab initio database previously developed by the authors using spin polarized density-functional-theory calculations, using the VASP code, is adopted. The work involves the volume (V 0), Wigner–Seitz radius, bulk modulus (B 0) and cohesive energy (E coh) of the phases. At the outset of the paper it is shown that these properties can be studied as functions of the average group number (AGN), i.e., the weighted average of the number of valence electrons involved in the VASP calculations. Moreover, the cohesive energy density (CED), defined as E coh/V 0, is shown to correlate very well with the AGN variable and with B 0. These striking regularities are given two complementary interpretations. First, a general microscopic picture of the variations of cohesion is developed by studying the evolution of the contributions of the d- and p-electrons to their electronic density of states. In this way the effects of the hybridization of d- and p-electrons, and the filling up of bonding and anti-bonding states is highlighted. Next, a thermodynamic analysis based on the classical approach developed by Rose, Ferrante, Smith and collaborators is performed. It is concluded that the correlation involving CED and B 0 is a manifestation of a significant degree of “universality” in the variation of the cohesive properties with the Wigner–Seitz radius of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Hillert, The Compound Energy Formalism, J. Alloys Compd., 2001, 320, p 161-176

    Article  Google Scholar 

  2. R. Hiren, P.D. Howes, and S.E. Hamman, A Review: On the Development of Low Melting Temperature Pb-free Solders, Microelectron. Reliab., 2014, 54, p 1253-1273

    Article  Google Scholar 

  3. J.L. Freer and J.W. Morris, Microstructure and Creep of Eutectic Indium/Tin on Copper and Nickel Substrates, J. Electron. Mater., 1992, 21(6), p 647-652

    Article  ADS  Google Scholar 

  4. K.N. Tu and K. Zeng, Tin–Lead (SnPb) Solder Reaction in Flip Chip Technology, Mater. Sci. Eng., 2001, R34, p 1-58

    Article  Google Scholar 

  5. T.H. Chuang, C.L. Yu, S.Y. Chang, and S.S. Wang, Phase Identification and Growth Kinetics of the Intermetallic Compounds Formed During In–49Sn/Cu Soldering Reactions, J. Electron. Mater., 2002, 31(6), p 640-645

    Article  ADS  Google Scholar 

  6. Dae-Gon Kim and Seung-Boo Jung, Interfacial Reactions and Growth Kinetics for Intermetallic Compound Layer Between In–48Sn Solder and Bare Cu Substrate, J. Alloys Compd., 2005, 386, p 151-156

    Article  Google Scholar 

  7. S. Sommadossi and A. Fernández, Guillermet, Interface Reaction Systematics in the Cu/In–48Sn/Cu System Bonded by Diffusion Soldering, Intermetallics, 2007, 15, p 912-917

    Article  Google Scholar 

  8. C.-Y. Huang and S.-W. Chen, Interfacial Reactions in In–Sn/Ni Couples and Phase Equilibria of the In–Sn–Ni System, J. Electron. Mater., 2002, 31, p 152-160

    Article  ADS  Google Scholar 

  9. S.-W. Chen, C.-H. Wang, and S.-K. Lin, Phase Diagrams of Pb-Free Solders and Their Related Materials Systems, Lead-Free Electronic Solders, A Special Issue of the Journal of Materials Science: Materials in Electronics, K.N. Subramanian, Ed., Springer, Berlin, 2006, p 152-160

    Google Scholar 

  10. S. Ramos de Debiaggi, C. Deluque Toro, G.F. Cabeza, and A. Fernández Guillermet, Ab Initio Comparative Study of the Cu–In and Cu–Sn Intermetallic Phases in Cu–In–Sn Alloys, J. Alloys Compd., 2012, 542, p 280-292

    Article  Google Scholar 

  11. S. Ramos de Debiaggi, C. Deluque Toro, G.F. Cabeza, and A. Fernández Guillermet, Ab Initio Study of the Cohesive Properties, Electronic Structure and Thermodynamic Stability of the Ni–In and Ni–Sn Intermetallics, J. Alloys Compd., 2013, 576, p 302-316

    Article  Google Scholar 

  12. S. Ramos de Debiaggi, N.V. González Lemus, C. Deluque Toro, and A. Fernández Guillermet, Ab Initio Study of the Compound-Energy Modeling of Multisublattice Structures: The (hP6) Ni2In-Type Intermetallics of the Ni–In–Sn System, J. Alloys Compd., 2015, 619, p 464-473

    Article  Google Scholar 

  13. S. Ramos de Debiaggi, N.V. González Lemus, G.F. Cabeza, and A. Fernández Guillermet, Cohesive Properties of (Cu, Ni)–(In, Sn) Intermetallics: Database, Electron–Density Correlations and Interpretation of Bonding Trends, J. Phys. Chem. Solids, 2016, 93, p 40-51

    Article  ADS  Google Scholar 

  14. A. Fernández Guillermet and G. Grimvall, Cohesive Properties and Vibrational Entropy of 3d-Transition Metal Compounds: MX (NaCl) Compounds (X = C, N, O, S), Complex Carbides and Nitrides, Phys. Rev. B, 1989, 40, p 10582-10593

    Article  ADS  Google Scholar 

  15. A. Fernández Guillermet and G. Grimvall, Bonding Properties and Vibrational Entropy of Transition Metal MeB2 (AlB2) Diborides, J. Less Common Met., 1991, 169, p 257-281

    Article  Google Scholar 

  16. J. Häglund, G. Grimvall, T. Jarlborg, and A. Fernández Guillermet, Band Structure and Cohesive Properties of 3d-Transition-Metal Carbides and Nitrides with the NaCl-Type Structure, Phys. Rev. B, 1991, 43, p 14400-14408

    Article  ADS  Google Scholar 

  17. A. Fernández Guillermet and G. Grimvall, Cohesive Properties and Vibrational Entropy of 3d-Transition Metal Carbides, J. Phys. Chem. Solids, 1992, 53, p 105-125

    Article  Google Scholar 

  18. A. Fernández Guillermet, J. Häglund, and G. Grimvall, Cohesive Properties of 4d-Transition Metal Carbides and Nitrides with the NaCl-Type Structure, Phys. Rev. B, 1992, 45, p 11557-11567

    Article  ADS  Google Scholar 

  19. A. Fernández Guillermet, J. Häglund, and G. Grimvall, Cohesive Properties and Electronic Structure of 5d-Transition Metal Carbides and Nitrides with the NaCl-Type Structure, Phys. Rev. B, 1993, 48, p 11673-11684

    Article  ADS  Google Scholar 

  20. J. Häglund, A. Fernández Guillermet, G. Grimvall, and M. Körling, Theory of Bonding in Transition Metal Carbides and Nitrides, Phys. Rev. B, 1993, 48, p 11685-11691

    Article  ADS  Google Scholar 

  21. K.A. Gschneidner, Physical Properties and Interrelationships of Metallic and Semimetallic Elements, Solid State Phys., 1964, 16, p 275-426

    Article  Google Scholar 

  22. S. Wacke, T. Górecki, Cz Górecki, and K. Książek, Relations Between the Cohesive Energy, Atomic Volume, Bulk Modulus and Sound Velocity in Metals, J. Phys. Conf. Ser., 2011, 289(1), p 012020

    Article  Google Scholar 

  23. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Universal Features of the Equation of State of Metals, Phys. Rev. B, 1984, 29(6), p 2963-2969

    Article  ADS  Google Scholar 

  24. P. Vinet, J.R. Smith, J. Ferrante, and J.H. Rose, Temperature Effects on the Universal Equation of State of Solids, Phys. Rev. B, 1987, 35(4), p 1945-1953

    Article  ADS  Google Scholar 

  25. C.D. Gelatt, A.R. Williams, and V.L. Moruzzi, Theory of Bonding of Transition Metals–Nontransition Metals, Phys. Rev. B, 1983, 27(4), p 2005-2013

    Article  ADS  Google Scholar 

  26. R.E. Watson and L.H. Bennett, Optimized Prediction for Heats of Formation of Transition Metal Alloys, Calphad, 1981, 5(1), p 25-40

    Article  Google Scholar 

  27. C. Colinet, A. Pasturel, and P. Hicter, Trends in Cohesive Energy of Transition Metal Alloys, Calphad, 1985, 9(1), p 71-99

    Article  Google Scholar 

  28. C. Colinet and A. Pasturel, Trends in Cohesive Energy Transition Rare-Earth Metal Alloys, Calphad, 1987, 11(4), p 335-348

    Article  Google Scholar 

  29. R.E. Watson, M. Weinert, J.W. Davenport, and G.W. Fernando, The Energetics of Transition Metal Alloy Formation: Theory Versus Experiment, Scr. Metall., 1988, 22, p 1285-1289

    Article  Google Scholar 

  30. J. Friedel, Transitions Metals, Electronic Structure of the d-Band. Its Role in the Crystalline and Magnetic Structures, The Physics of Metals-1 Electrons, J.M. Ziman, Ed., Cambridge University Press, Cambridge, 1969, p 340-403

    Google Scholar 

  31. J.C. Fuggle, F.U. Hillebrecht, R. Zeller, Z. Zolnierek, and P.A. Bennett, Electronic Structure of Ni and Pd Alloys. I. X-Ray Photoelectron Spectroscopy of the Valence Bands, Phys. Rev. B, 1982, 27(4), p 2145-2178

    Article  ADS  Google Scholar 

  32. P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, B50, p 17953-17979

    Article  ADS  Google Scholar 

  33. G. Kresse and J. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, B59, p 1758-1775

    Article  ADS  Google Scholar 

  34. G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15-50

    Article  Google Scholar 

  35. J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron–Gas Correlation Energy, Phys. Rev. B, 1992, 45(23), p 13244-13249

    Article  ADS  Google Scholar 

  36. H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zones Integrations, Phys. Rev. B, 1976, 13, p 5188-5192

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Methfessel and A.T. Paxton, High-Precision Sampling for Brillouin-Zone Integration in Metals, Phys. Rev. B, 1986, 40, p 3616-3621

    Article  ADS  Google Scholar 

  38. G. Ghosh, Elastic Properties, Hardness, and Indentation Fracture Toughness of Intermetallics Relevant to Electronic Packaging, J. Mater. Res., 2004, 19, p 1439-1454

    Article  ADS  Google Scholar 

  39. A.S. Mikhaylushkin, T. Sato, S. Carlson, S.I. Simak, and U. Häussermann, High-Pressure Structural Behavior of Large-Void CoSn-type Intermetallics: Experiments and First-Principles Calculations, Phys. Rev. B, 2008, 77, p 014102(8)

    Article  ADS  Google Scholar 

  40. D.S. Bertoldi, S.B. Ramos, and A. Fernández Guillermet, Interrelations Between EOS Parameters and Cohesive Energy of Transition Metals: Thermostatistical Approach, Ab Initio Calculations and Analysis of “Universality” Features, J. Phys. Chem. Sol., 2016 (under review)

  41. J.A. Garcés and A. Fernández Guillermet, Equation of State Parameters for Stable and Non-stable Transition Metal Phases from Universal Binding Energy Relation, Calphad, 1998, 22, p 469-493

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Project PIP 112-20110100814 from CONICET and Project I197 from Universidad Nacional del Comahue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fernández Guillermet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoldi, D.S., Ramos, S.B., González Lemus, N.V. et al. Cohesive Properties of Cu-X and Ni-X (In, Sn) Intermetallics: Ab Initio Systematics, Correlations and “Universality” Features. J. Phase Equilib. Diffus. 38, 257–267 (2017). https://doi.org/10.1007/s11669-017-0536-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0536-9

Keywords

Navigation