Skip to main content
Log in

Titanium-boride eutectic materials. Structure of the Ti-Nb-B alloys and phase equilibria

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The structure of Ti-Nb-B alloys that are cast and annealed at subsolidus temperatures and at 1400°C is experimentally analyzed (x-ray diffraction, metallography, and electron probe microanalysis), and so are temperatures of their phase transformations (differential thermal analysis and pyrometry). No ternary phases are found in the alloys. Projections of solidus and liquidus surfaces, an isothermal section at 1400°C, and a vertical section at 7.5 at.% B are constructed. A reaction scheme is proposed for alloy crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lampman, “Wrought titanium and titanium alloys,” in: Metals Handbook, Tenth Edition, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM, Metals Park, Ohio (1990), pp. 592–633.

    Google Scholar 

  2. S. Tamirisakandala, R. B. Bhat, J. S. Tiley, and D. B. Miracle, “Grain refinement of cast titanium alloys via trace boron addition,” Scr. Mater., 53, 1421–1426 (2005).

    Article  CAS  Google Scholar 

  3. A. B. Godfrey and M. H. Loretto, “The nature of complex precipitates associated with the addition of boron to a γ-based titanium aluminide,” Intermetallics, 4, No. 1, 47–53 (1996).

    Article  CAS  Google Scholar 

  4. D. J. Larson, C. T. Liu, and M. B. Miller, “Boron solubility and boride compositions in α2 + γ titanium aluminides,” Intermetallics, 5, No. 6, 411–414 (1997).

    Article  CAS  Google Scholar 

  5. T. T. Cheng, “The mechanism of grain refinement in TiAl alloys by boron addition-an alternative hypothesis,” Intermetallics, 8, No. 1, 29–37 (2000).

    Article  CAS  Google Scholar 

  6. M. Beschliesser, A. Chatterjee, A. Lorich, et al., “Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800° C,” Mater. Sci. Engin. A., 329-331, 124–129 (2002).

    Article  Google Scholar 

  7. F. Marino, A. Rebuffo, and F. Sorrentino, “Effects of low-cycle fatigue on bending properties and fracture toughness of un-HIP’ed Ti-47Al-2Cr-2Nb-1B intermetallic,” Int. J. Fatigue, 27, No. 2, 143–153 (2005).

    Article  CAS  Google Scholar 

  8. C. R. Feng and D. J. Michel, “Microstructures of Nb-26Ti-48Al + (Nb, Ti)B,” Mater. Sci. Eng. A, A152, 202–207 (1992).

    CAS  Google Scholar 

  9. F. Tang, S. Emura, and M. Hagiwara, “Reinforcing effect of in-situ grown TiB fibers on Ti-22Al-11Nb-4Mo alloy,” Scripta Mater., 43, 573–578 (2000).

    Article  CAS  Google Scholar 

  10. F. Tang, Sh. Nakazawa, and M. Hagiwara, “Effect of boron microalloying on microstructure, tensile properties and creep behavior of Ti-22Al-20Nb-2W alloy,” Material. Sci. Eng. A., A315, Nos. 1–2, 147–152 (2001).

    Article  CAS  Google Scholar 

  11. T. Saito, T. Furuta, and T. Yamaguchi, “Development of low cost titanium matrix composite,” in: Recent Advances in Titanium Metal Matrix Composites, TSM, PA, Warrendale (1995), pp. 33–44.

    Google Scholar 

  12. F. W. Grossman and A. S. Yue, “Undirectionally solidified Ti-TiB and Ti-Ti5Si3 eutectic composites,” Metall. Trans., 2, 1545–1555 (1985).

    Google Scholar 

  13. Yu. B. Kuz’ma, “An x-ray structural investigation of the systems niobium-titanium-boron and niobium-molybdenum-boron,” Powder Metall. Met. Ceram., 10, No. 4, 298–300 (1971).

    Google Scholar 

  14. G. A. Yasinskaya and M. S. Groysberg, “Interaction of titanium boride with niobium and tungsten,” Powder Metall. Met. Ceram., 2, No. 6, 457–458 (1963).

    Article  Google Scholar 

  15. T. B. Gorbacheva, Yu. I. Krylov, and N. M. Mikova, “Investigation of high-temperature interaction between refractory metals and borides,” in: O. P. Kolchin (ed.), Collection of Papers on Solid Alloys and Refractory Metals, Metallurgy, Moscow (1973), pp. 239–243.

    Google Scholar 

  16. H. R. Z. Sandim, C. A. Nunes, and A. S. Ramos, “Sintering of P/M Nb-TiB2 alloys,” Mater. Sci. Forum, 416-418, 251–256 (2003).

    Article  CAS  Google Scholar 

  17. G. V. Samsonov and V. S. Neshpor, “Investigation of the mutual diffusion of titanium and niobium borides,” Dokl. AN SSSR, 101, No. 5, 899–900 (1955).

    CAS  Google Scholar 

  18. G. V. Samsonov and V. S. Neshpor, “Research into the formation of isomorphous boride alloys,” Zh. Fiz. Khim., 29, No. 5, 839–845 (1955).

    CAS  Google Scholar 

  19. J. L. Murray, P. K. Liao, and K. E. Spear, “The B-Ti (boron-titanium) system,” Bul. Alloy Phase Equilib., 7, No. 6, 550–555 (1986).

    Article  CAS  Google Scholar 

  20. J. L. Murray, P. K. Liao, and K. E. Spear, “The B-Ti (boron-titanium) system,” in: J. L. Murray (ed.), Phase Diagrams of Binary Titanium Alloys, ASM, Metals Park, Ohio (1987), pp. 33–38.

    Google Scholar 

  21. T. B. Massalski, P. R. Subramanian, H. Okomoto, and L. Kasprzak (eds.), Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1990), p. 3589.

    Google Scholar 

  22. N. P. Lyakishev (ed.), Phase Diagrams for Binary Systems, Vol. 1, Mashinostroyenie, Moscow (1996), p. 245.

    Google Scholar 

  23. X. Ma, Ch. Li, Zh. Du, and W. Zhang, “Thermodynamic assessment of the Ti-B system,” Alloys Comp., 370, 149–158 (2004).

    Article  CAS  Google Scholar 

  24. J. L. Murray, “The Nb-Ti (niobium-titanium) system,” in: J. L. Murray (ed.), Phase Diagrams of Binary Titanium Alloys, ASM, Metals Park, Ohio (1987), pp. 188–194.

    Google Scholar 

  25. V. N. Eremenko and L. A. Tretiachenko, Ternary Systems of Titanium with Transition Metals of Groups IV–VI, Naukova Dumka, Kiev (1987), p. 232.

    Google Scholar 

  26. P. Rogl, “Nb-B-C (niobium-boron-carbon),” in: G. Effenberg (ed.), Phase Diagrams of Metal-Boron-Carbon Ternary Systems, Ohio, ASM-MSI, Metals Park (1998), pp. 202–205.

    Google Scholar 

  27. T. Lunström and L. E. Tergenius, “On the solid solution of copper in β-rhombohedral Boron,” J. Less-Common Met., 47, 23–28 (1976).

    Article  Google Scholar 

  28. A. J. Crespo, L.-E. Tergenius, and T. Lundström, “The solid solution of 4d, 5d, and some p elements in β rhomhedral boron,” J. Less. Common Met., 77, 147–150 (1981).

    Article  Google Scholar 

  29. A. Wittmann, H. Nowotny, and H. Boller, “Ein beitrag zum dreistoff titan-molybdän-bor,” Monatsh. Chem., 91, No. 4, 608–615 (1960).

    Article  CAS  Google Scholar 

  30. B. F. Decker and J. S. Kasper, “The crystal structure TiB,” Acta Cryst., 7, 77–80 (1954).

    Article  CAS  Google Scholar 

  31. G. V. Samsonov and E. V. Petrash, “Some physical and chemical properties of titanium boride and nitride,” Metalloved. Obrab. Met., No. 4, 19–24 (1955).

    Google Scholar 

  32. M. E. Hyman, C. McCullough, I. I. Valencia, et al., “Microstructure evolution in TiAl alloys with B additions: conventional solidification,” Metall. Trans. A., 20A, 1847–1859 (1989).

    CAS  Google Scholar 

  33. E. Rudy, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Wright-Patterson, Air Force Materials Laboratory: Tech. Rep. AFML-TR-65-2, Part V, Compendium of Phase Diagram Data, Ohio (1969), p. 689.

    Google Scholar 

  34. P. Rogl, “The System B-N-Nb,” in: P. Rogl and J. C. Schuster (eds.), Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems, ASM, Matals Park, Ohio (1992), pp. 68–72.

    Google Scholar 

  35. V. P. Pshokin, A. M. Zakharov, and I. I. Novikov, “Boron solubility in niobium in solid state,” Izv. Vuzov. Tsvet. Metall., No. 1, 111–114 (1971).

  36. A. M. Zakharov, V. N. Pshokin, and E. I. Ivanova, “Niobium angle of the Nb-B-C system, Izv. AN SSSR, Metally, No. 5, 193–196 (1985).

  37. A. M. Zakharov and V. N. Pshokin, “Niobium angle of the Nb-Hf-B system,” Izv. AN SSSR, Metally, No. 6, 195–196 (1985).

  38. L. A. Borges, G. C. Coelho, C. A. Nunes, and P. A. Suzuki, “New data on phase equilibria in the Nb-rich region of the Nb-B system,” J. Phase Equilibria, 24, No. 3, 140–146 (2003).

    Article  CAS  Google Scholar 

  39. H. Nowotny, F. Benesovsky, and R. Kieffer, “Beitrag zum aufbau systeme Niob-Bor und Tantal-Bor,” Z. Metallkd., 50, No. 7, 417–423 (1959).

    CAS  Google Scholar 

  40. H. Bolmgren and T. A. Lundström, “New binary boride, Nb5B6,” J. Less-Common Met., 159, L25–L27 (1990).

    Article  CAS  Google Scholar 

  41. C. A. Nunes, B. B. de Lima, G. C. Coelho, et al., “On the stability of the V5B6-phase,” J. Alloys Comp., 370, 164–168 (2004).

    Article  CAS  Google Scholar 

  42. S. Okada, K. Hamano, T. Lundström, and I. Higashi, “Crystal growth of the new compound Nb2B3, and the borides NbB, Nb5B6, Nb3B4, and NbB2 using the copper-flux method,” in: D. Emin, T. L. Aselage, A. C. Switendick, et al. (eds.), AIP Conf. Proc. 231 “Boron-Rich Solid” (10th Int. Symp. on Boron, Borides, and Related Compounds, 1990, Albuquergue, NM, USA), AIP, New York (1991), pp. 456–459.

    Google Scholar 

  43. Ju. A. Kocherzhinsky, “Differential thermocouple up to 2450°C and thermographic investigations of refractory silicides,” in: Thermal Analysis Proceeding of Third ICTA (Davos), Vol. 1, Birkhäuser Verlag, Basel (1971), pp. 549–559.

    Google Scholar 

  44. Yu. A. Kocherzhinskii, E. A. Shishkin, and V. I. Vasilenko, “DTA apparatus with a thermocouple sensor up to 2200°C,” in: Phase Diagrams of Metal Systems [in Russian], Nauka, Moscow (1971), pp. 245–249.

    Google Scholar 

  45. M. Pirani and H. Altertum, “Uber eine Methode zur Schmelzpunktbestimmung an Hochschmelzenden Metallen,” Z. Elektrochem., 29, No. 1–2, 5–8 (1923).

    CAS  Google Scholar 

  46. E. Rudy and J. Progulski, “A Pirani furnace for the precision determination of the melting temperatures of refractory metallic substances,” Planseeber. Pulvermet., 15, No. 1, 13–45 (1967).

    CAS  Google Scholar 

  47. A. A. Bondar, V. A. Maslyuk, T. Ya. Velikanova, and A. V. Grytsiv, “Phase equilibria in the Cr-Ni-C system and their use in developing physical and chemical basis for chromium carbide-based solid solutions,” Poroshk. Metall., No. 5–6, 13–24 (1997).

  48. T. Ya. Velikanova, A. A, Bondar, and A. V. Grytsiv, “The chromium-nickel-carbon phase diagram,” J. Phase Equilibria, 20, No. 2, 125–147 (1999).

    Article  CAS  Google Scholar 

  49. A. V. Dobromyslov and V. A. Elkin, “Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods,” Scr. Mater., 44, 905–910 (2001).

    Article  CAS  Google Scholar 

  50. L. V. Artyukh, D. B. Borysov, A. A. Bondar, et al., “Titanium-boride eutectic materials: Phase equilibria and constitution of alloys in the Ti-rich portion of the Ti-V-B system,” High Temp. Mat. Pr.-Isr., 25, No. 1–2, 75–82 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 1–2(453), pp. 72–87, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, D.B., Artyukh, L.V., Bondar, A.A. et al. Titanium-boride eutectic materials. Structure of the Ti-Nb-B alloys and phase equilibria. Powder Metall Met Ceram 46, 58–71 (2007). https://doi.org/10.1007/s11106-007-0011-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-007-0011-y

Keywords

Navigation