Skip to main content
Log in

Genome-Wide Identification, Expression, and Activity Analysis of Alkaline/Neutral Invertase Gene Family from Cassava (Manihot esculenta Crantz)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Alkaline/neutral invertase comprises a family of enzymes that catalyze the irreversible hydrolysis of sucrose into glucose and fructose. They play a crucial role in carbohydrate partitioning and developmental processes of plants. In this study, we genome-wide identified 11 alkaline/neutral invertase family genes (MeNINVs) from the cassava genome. Based on phylogeny, MeNINVs could be classified into α and β groups. The α group genes are encoded by six exons (MeNINV1, 6, 7, 8, and 10) or four exons (MeNINV9), whereas the β group genes are encoded by four exons (MeNINV2, 3, 4, and nINV1) or five exons (MeNINV5). Their catalytic residues of motifs 2 and 4 for sucrose hydrolysis locate in all MeNINVs. qRT-PCR analysis has demonstrated that all MeNINVs are highly expressed in floral organs. During tuber development, MeNINV1, 6, 10, and nINV1 are strongly expressed in source tissues (leaves), and MeNINV1 and nINV1 also play an important role in sink organs (tuber). Activity analysis of alkaline/neutral invertase and determination of sucrose content in source and sink organs of cassava indicates that lower efficiency of sucrose hydrolysis in source organs (leaves) and higher efficiency in sink organs (tuber) are beneficial sucrose to transport from source to sink organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a.a:

Amino acids

bp:

Base pair

cDNA:

Complementary DNA

INV:

Invertase

kDa:

Kilodaltons

MW:

Molecular weight

ORF:

Open reading frame

PCR:

Polymerase chain reaction

pI:

Isoelectric point

qRT-PCR:

Real-time quantitative PCR

RT-PCR:

Reverse transcription polymerase chain reaction

SuSy:

Sucrose synthase

UDP-glucose:

Uridine 5′-diphosphoglucose

References

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(suppl 2):W369–W373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bala N (2011) Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food Chem Toxicol 49(3):690–693

    Article  Google Scholar 

  • Bocock P, Morse A, Dervinis C, Davis J (2008) Evolution and diversity of invertase genes in Populus trichocarpa. Planta 227(3):565–576

    Article  CAS  PubMed  Google Scholar 

  • Ceballos H, Iglesias CA, Pérez JC, Dixon AG (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56(4):503–516

    Article  CAS  PubMed  Google Scholar 

  • Cho JI, Lee SK, Ko S, Kim HK, Jun SH, Lee YH, Bhoo SH, Lee KW, An G, Hahn TR (2005) Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep 24(4):225–236

    Article  CAS  PubMed  Google Scholar 

  • Chourey PS, Li QB, Cevallos-Cevallos J (2012) Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize. Plant Sci 184:45–53

    Article  CAS  PubMed  Google Scholar 

  • Dreux M, Lafosse M (1995) Chapter 13 Evaporative light scattering detection of carbohydrates in HPLC. In: Ziad El R (ed) Journal of Chromatography Library, Volume 58. Elsevier, pp 515–540

  • Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G, Udvardi MK, Katinakis P (2006) Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase. Plant Mol Biol 62(1):53–69

    Article  CAS  PubMed  Google Scholar 

  • Gerrits N, Turk SC, van Dun KP, Hulleman SH, Visser RG, Weisbeek PJ, Smeekens SC (2001) Sucrose metabolism in plastids. Plant Physiol 125(2):926–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structuredisplay server. Yi Chuan (Chinese) 29:1023–1026

    Article  CAS  Google Scholar 

  • Hayes MA, Feechan A, Dry IB (2010) Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiol 153(1):211–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hyun TK, Eom SH, Kim JS (2011) Genomic analysis and gene structure of the two invertase families in the domesticated apple (Malus x domestica Borkh.). Plant OMICS J Plant Mol Biol Omics 4(7):391–399

    CAS  Google Scholar 

  • Ihemere U, Arias–Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4(4):453–465

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60(5):615–634

    Article  CAS  PubMed  Google Scholar 

  • Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep Comput Softw J Sci 1(6):270–272

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Martín ML, Lechner L, Zabaleta EJ, Salerno GL (2013) A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis. Planta 237:813–822

    Article  PubMed  Google Scholar 

  • Murayama S, Handa H (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225(5):1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Narayanan NN, Ihemere U, Ellery C, Sayre RT (2011) Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels. PLoS ONE 6(7):e21996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nonis A, Ruperti B, Pierasco A, Canaguier A, Adam-Blondon A-F, Di Gaspero G, Vizzotto G (2008) Neutral invertases in grapevine and comparative analysis with Arabidopsis, poplar and rice. Planta 229(1):129–142

    Article  CAS  PubMed  Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi X, Wu Z, Li J, Mo X, Wu S, Chu J, Wu P (2007) AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol 64(5):575–587

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9(12):606–613

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL (2012) Signaling role of sucrose metabolism in development. Mol Plant 5(4):763–765

    Article  CAS  PubMed  Google Scholar 

  • Salcedo A, Zambrana C, Siritunga D (2014) Comparative expression analysis of reference genes in field-grown cassava. Tropical Plant Biology:1–12

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121(1):1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sturm A, Chrispeels MJ (1990) cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2(11):1107–1119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4(10):401–407

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang GQ, Luscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11(2):177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas WA, Salerno GL (2010) The Cinderella story of sucrose hydrolysis: alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Sci 178(1):1–8

    Article  CAS  Google Scholar 

  • Vargas W, Cumino A, Salerno GL (2003) Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta 216(6):951–960

    CAS  PubMed  Google Scholar 

  • Vargas WA, Pontis HG, Salerno GL (2008) New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta 227(4):795–807

    Article  CAS  PubMed  Google Scholar 

  • Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M (2009) A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J Exp Bot 60(12):3353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang L, Li Y, Rolland F, Van den Ende W (2011) Neutral invertase, hexokinase and mitochondrial ROS homeostasis: Emerging links between sugar metabolism, sugar signaling and ascorbate synthesis. Plant Signal Behav 6(10):1567–1573

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Q, Wang S, Xie Y, Sun J, Wang J (2010) HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl-2 expression. Int J Biol Macromol 46(2):167–172

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Geng MT, Wu XH, Liu J, Li RM, Hu XW, Guo JC (2014) Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz). Int J Mol Sci 15(5):7313–7331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Cohn NS, Mitchell JP (1996) Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloem. Plant Physiol 112(3):1111–1117

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (no. 2010CB126600), the National Natural Science Foundation of China (no. 31170234), and the Major Technology Project of Hainan (no. ZDZX2013023-1). The Fundamental Scientific Research Funds for Chinese Academy of Tropical Agricultural Sciences (No. CATAS-1630052014004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Wen Hu or Jian-Chun Guo.

Additional information

Yuan Yao and Meng-ting Geng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 191 kb)

ESM 2

(DOC 41 kb)

ESM 3

(DOC 1678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Geng, MT., Wu, XH. et al. Genome-Wide Identification, Expression, and Activity Analysis of Alkaline/Neutral Invertase Gene Family from Cassava (Manihot esculenta Crantz). Plant Mol Biol Rep 33, 304–315 (2015). https://doi.org/10.1007/s11105-014-0743-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0743-z

Keywords

Navigation