Skip to main content
Log in

Differential Transcriptional Profiles of Dormancy-Related Genes in Apple Buds

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The production of temperate fruit crops depends on plant developmental processes, primarily the shift from the juvenile phase to the reproductive phase, dormancy transitions and flowering. Apple tree (Malus × domestica Borkh.) development is regulated by chilling temperatures, which are required for bud dormancy progression. The apple cultivar Castel Gala is a spontaneous mutation of "Gala Standard". "Castel Gala" is characterized by a 50 % decrease in the chilling requirement (CR) for dormancy release, which results in an earlier budbreak. This work explores the contrasting phenotypes of these cultivars using suppression subtractive hybridization (SSH). From 1,019 unigenes identified by SSH, we selected 28 candidate genes putatively associated with dormancy cycling. Reverse transcription-quantitative polymerase chain reaction was used to validate the differential expression profiles and to transcriptionally characterize these genes in three distinct apple cultivars ("Castel Gala", "Royal Gala" and "Fuji Standard") during a cycle comprising growth to dormancy. Of the 28 candidate genes analyzed, 17 confirmed the differences in expression predicted by SSH. Seasonal transcript accumulation during the winter was observed for several genes, with higher steady-state mRNA levels maintained longer in cultivars with a high CR. The transcription profiles suggest that these genes may be associated with dormancy establishment and maintenance. Of the 17 candidate genes, transcripts coding for dormancy-associated MADS-box (DAM), dehydrins, GAST1, LTI65, NAC, HTA8, HTA12 and RAP2.12-like proteins displayed major differences in gene expression between cultivars through the winter. These genes were therefore considered good candidates for key roles in the dormancy process in apple trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AP2:

APETALA2

ARC5:

Accumulation and replication of chloroplast 5

ARP6:

Actin-related protein 6

CAMTA1:

Calmodulin-binding transcription activator 1

CBF:

C-repeat binding factor

CO:

CONSTANS

COR:

Cold-regulated

CR:

Chilling requirement

CRT:

C-repeat

DAM:

Dormancy-associated MADS-box

DHN:

Dehydrin

DRE:

Dehydration-responsive element

DREB:

Dehydration-responsive element binding protein

EST:

Expressed sequence tag

FT:

FLOWERING LOCUS T

GAST1:

GA stimulated transcript 1

GO:

Gene ontology

GolS:

Galactinol synthase

GRAS:

GA insensitive, repressor of GA1, scarecrow

ICE1:

Inducer of CBF expression 1

LEA:

Late embryogenesis abundant

LOS1:

Low expression of osmotically responsive genes 1

LTI:

Low-temperature inducible

LTI65:

Low-temperature-induced 65

MDH:

Malate dehydrogenase

NAC:

No apical meristem

ATAF1/2:

Cup-shaped cotyledon 2

RAP2.12:

Related to APETALA2-12

RCI:

Rare cold inducible gene

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

SCL:

Scarecrow-like

SD:

Short days

SSH:

Suppression subtractive hybridization

WD40:

Transcription factor WD40-like repeat domain

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anzanello R (2012) Fisiologia e modelagem da dormência em gemas de macieira. Doctoral thesis, Federal University of Rio Grande do Sul, Porto Alegre

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. Hortscience 38:911–921

    Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F et al (2012) Making sense of low oxygen sensing. Trends in Plant Sci 17:129–138

    Article  CAS  Google Scholar 

  • Bielenberg DG, Wang YE, Li Z, Zhebentyayeva T, Fan S, Reighard GL et al (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa LC, Brunner AM, Jansson S, Strauss SH et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Bolle C, Koncz C, Chua NH (2000) PAT1, a new member of the GRAS family is involved in phytochrome A signal transduction. Genes Dev 14:1269–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Botelho RV, Ayub RA, Muller MML (2006) Sommatory of chilling hours and chilling units at different regions of Paraná state. Sci Agr 7:89–96

    Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: A review. Sci Hort 130:357–372

    Article  Google Scholar 

  • Celton J-M, Martinez S, Jammes M-J, Bechti A, Salvi S, Legave J-M et al (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392

    Article  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Denardi F, Seccon JJ (2005) ‘Castel Gala’ – mutação da macieira ‘Gala’ com baixa necessidade de frio e maturação precoce. Agropec Catar 18:78–82

    Google Scholar 

  • Dennis FG (1987) Two methods for studying rest: temperature alternation and genetic analysis. Hortscience 22:820–824

    Google Scholar 

  • Derory J, Léger P, Garcia V, Schaeffer J, Hauser M, Salin F et al (2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol 170:723–738

    Article  CAS  PubMed  Google Scholar 

  • Dogramaci M, Horvath DP, Chao WS, Foley ME, Christoffers MJ, Anderson JV (2010) Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. Plant Mol Biol 73:207–226

    Article  CAS  PubMed  Google Scholar 

  • EPAGRI (2006) Cultivares: descrição e comportamento no sul do Brasil. In A cultura da macieira. Gráfica Editora Pallotti, Florianópolis, pp 113–132

    Google Scholar 

  • EPPO (1984) EPPO crop growth stage keys. EPPO Bull 14:291–294

    Article  Google Scholar 

  • Erez A, Faust M, Line MJ (1998) Changes in water status in peach buds on induction, development and release from dormancy. Sci Hortic 73:111–123

    Article  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance and release. Hortscience 32:623–629

    Google Scholar 

  • Feng X, Zhao Q, Zhao L, Qiao Y, Xie X, Li H et al (2012) The cold-induced basic helix–loop–helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Op Plant Biol 9:196–202

    Article  Google Scholar 

  • Garcia-Bañuelos ML, Gardea AA, Winzerling JJ, Moreno LV (2009) Characterization of a midwinter-expressed dehydrin (DHN) gene from apple trees (Malus domestica). Plant Mol Biol Rep 27:476–487

    Article  Google Scholar 

  • Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S (2011) Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol 155:776–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S et al (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131:1258–1269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed Central  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    Article  CAS  PubMed  Google Scholar 

  • Howe GT, Saruup P, Davies J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage and winter survival in an F2 family of hybrid poplars. Theor Appl Genet 101:632–642

    Article  Google Scholar 

  • Illa E, Sargent DJ, Girona EL, Bushakra J, Cestaro A, Crowhurst R et al (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Klotke J, Kopka J, Gatzke N, Heyer AG (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation—evidence for a role of raffinose in cold acclimation. Plant Cell Environ 27:1395–1404

    Article  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plantarum 51:601–617

    Article  Google Scholar 

  • Krishnaraj T, Gajjeraman P, Palanisamy S, Chandrabose SRS, Mandal AKA (2011) Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach. Plant Physiol Biochem 49:565–571

    Article  CAS  PubMed  Google Scholar 

  • Kuhn E (2001) From library screening to microarray technology: strategies to determine gene expression profiles and to identify differentially regulated genes in plants. Ann Bot 87:139–155

    Article  CAS  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    Article  CAS  PubMed  Google Scholar 

  • Kurbidaeva AS, Novokreshchenova MG (2011) Genetic control of plant resistance to cold. Russ J Genet 47:646–661

    Article  CAS  Google Scholar 

  • Labuschagné IF, Louw JH, Schmidt K, Sadie A (2002) Genetic variation in chilling requirement in apple progeny. J Am Soc Hort Sci 127:663–672

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endodormancy, paradormancy, and ecodormancy – physiological terminology and classification for dormancy research. Hortscience 22:371–377

    Google Scholar 

  • Lee MH, Kim B, Song S-K, Heo J-O, Yu N-I Lee SA et al (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67:659–670

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML et al (2010) Identification of genes associated with dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Romeu JF, García-Brunton J, Ríos G, Badenes ML (2012) Gene expression analysis of chilling requirements for flower bud break in peach. Plant Breed 131:329–334

    Article  CAS  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg BG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang D, Xia H, Wu S, Ma F (2012) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 39:10759–10768

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi F, Voesenek LACJ et al (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422

    Article  CAS  PubMed  Google Scholar 

  • March-Díaz R, Reyes JC (2009) The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant 2:565–577

    Article  PubMed  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K et al (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A1. Plant Physiol 150:1972–1980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A (2009) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9:81–96

    Article  CAS  PubMed  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J et al (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T et al (2007) SIZ1-Mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107

    Article  CAS  PubMed  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EH, Allan AC, Beuning LL et al (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D et al (2009) Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol 71:403–423

    Article  CAS  PubMed  Google Scholar 

  • Or E, Vilozny I, Eyal Y, Ogrodovitch A (2000) The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyanamide may involve the SNF-like protein kinase GDBRPK. Plant Mol Biol 43:483–494

    Article  CAS  PubMed  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genomics 3:144–152

    Article  CAS  PubMed  Google Scholar 

  • Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8:355–357

    Article  CAS  PubMed  Google Scholar 

  • Petri JL, Hawerroth FJ, Leite GB, Couto M, Francescatto P (2012) Apple phenology in subtropical climate conditions. In: Zhang X (ed) Phenology and climate change, 1st edn. InTech, doi: 10.5772/34301

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pichler FB, Walton EF, Davy M, Triggs C, Janssen B, Wünsche JN et al (2007) Relative developmental, environmental, and tree-to-tree variability in buds from field-grown apple trees. Tree Genet Genomes 3:329–339

    Article  Google Scholar 

  • Raventos D, Meier C, Mattsson O, Jensen AB, Mundy J (2000) Fusion genetic analysis of gibberellin signaling mutants. Plant J 22:427–438

    Article  CAS  PubMed  Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J et al (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-b-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjärvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640

    Article  CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J et al (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T et al (2011) Functional and expressional analysis of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol 157:485–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi L, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant J 2:153–159

    CAS  PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Troggio M, Gleave A, Salvi S, Chagné D, Cestaro A, Kumar S et al (2012) Apple, from genome to breeding. Tree Genet Genomes 8:509–529

    Article  Google Scholar 

  • Ubi BE, Ban Y, Shimada T, Ito A, Nakajima I, Takemura Y et al (2010) Molecular cloning of dormancy-associated mads-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. J Am Soc Hortic Sci 135:174–182

    Google Scholar 

  • Unda F, Canam T, Preston L, Mansfield SD (2012) Isolation and characterization of galactinol synthases from hybrid poplar. J Exp Bot 63:2059–2069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Schoot C, Rinne PLH (2011) Dormancy cycling at the shoot apical meristem: Transitioning between self-organization and self-arrest. Plant Sci 180:120–131

    Article  PubMed  Google Scholar 

  • van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Walsh CS, Volz R (1990) ‘Gala’, and the red ‘Gala’ sports: a preliminary comparison of fruit maturity. Fruit Varieties J 44:18–23

    Google Scholar 

  • Welling A, Rinne P, Viherä-Aarnio A, Kontunen-Soppela S, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K et al (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plantarum 133:298–317

    Article  CAS  Google Scholar 

  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2012) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63:797–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yakolev IA, Asante DAK, Fossdal CG, Partanen J, Junttila O, Johnsen Ø (2008) Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228:459–472

    Article  Google Scholar 

  • Yamane H, Kashiwa Y, Kakehi E, Yionemori K, Mori H, Hayashi K et al (2006) Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiol 26:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Kashiwa Y, Ooka T, Tao R, Yionemori K (2008) Suppression subtractive hybridization in differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. J Am Soc Hort Sci 133:708–716

    Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Sasaki R, Tao R (2011) Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci Hortic 129:844–848

    Article  CAS  Google Scholar 

  • Yang T, Poovalah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yant L, Mathieu J, Dihn TT, Ott F, Lanz C, Wollmann H et al (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156–2170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yi H, Sardesai N, Fujinuma T, Chan C, Veena GSB (2006) Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell 18:1575–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yooyongwech S, Sugaya S, Sekozawa Y, Gemma H (2009) Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content. Plant Cell Rep 28:1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Yang T (2002) RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol Biol Rep 20:417a–417e

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge our colleagues at the Laboratory of Plant Molecular Genetics (especially to M.Sc. Pâmela Perini and Ms. Marcela Czarnobay) and Laboratory of Plant Physiology at Embrapa Grape and Wine who helped us in many technical steps. We thank M.Sc. Rochele P. Kirch and Mrs. Jordana B. Ludwig (ACTGene Lab) for their technical assistance in DNA sequencing. We also thank "Empresa de Pesquisa Agropecuária do Estado de Santa Catarina" (EPAGRI, Caçador, SC, Brazil, especially to M.Sc. Frederico Denardi and Dr. Marcus V. Kvitschal), Mr. Décio Amorim (Papanduva, SC, Brazil) and Mr. Jânio Seccon (Monte Castelo, SC, Brazil) for providing us with the access to their apple orchards. This work was supported by "Financiadora de Estudos e Projetos" (FINEP, Brazil) [grant number 0107009700] and "Empresa Brasileira de Pesquisa Agropecuária" (Embrapa, Brazil) [grant number 0207070070003]. VSF received a M.Sc. scholarship from "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior" (CAPES, Ministry of Education, Brazil). DDP received a postdoctoral scholarship from "Conselho Nacional de Desenvolvimento Científico e Tecnológico" (CNPq, Ministry of Science and Technology, Brazil). GP and MPM are recipients of research fellowships from CNPq [grant numbers 311361/2009-9 and 306945/2009-6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Fernando Revers.

Additional information

The nucleotide sequences reported in this paper have been submitted to GenBank with the accession numbers JZ480898 to JZ482228.

V. S. Falavigna and D. D. Porto contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 290 kb)

ESM 2

(PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falavigna, V.d.S., Porto, D.D., Buffon, V. et al. Differential Transcriptional Profiles of Dormancy-Related Genes in Apple Buds. Plant Mol Biol Rep 32, 796–813 (2014). https://doi.org/10.1007/s11105-013-0690-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0690-0

Keywords

Navigation