Skip to main content
Log in

Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Low, non-freezing temperatures and/or short daylength (SD) regulates cold acclimation and dormancy in fruit trees. Regarding cold acclimation, C-repeat binding factor (CBF/DREB) transcriptional activator genes have the well-documented ability to induce the expression of a suite of genes associated with increased cold tolerance. We isolated a full-length cDNA of a peach CBF gene, designated PpCBF1 (GenBank Accession HM992943), and constitutively expressed it using an enhanced 35S promoter in apple. Unexpectedly, constitutive overexpression of the PpCBF1 in apple resulted in strong sensitivity to short daylength. Growth cessation and leaf senescence were induced in transgenic lines exposed to SD and optimal growth temperatures of 25°C over a 4-week period. Following 1–4 weeks of SD and 25°C trees were returned to LD and 25°C in the greenhouse. Control (untransformed) plants continued to grow while transgenic lines receiving two or more weeks of SD remained dormant and began to drop leaves. Constitutive overexpression of the PpCBF1 in apple resulted in a 4–6°C increase in freezing tolerance in both the non-acclimated and acclimated states, respectively, compared with untransformed M.26 trees. This is the first instance that constitutive overexpression of a CBF gene has resulted in SD-induction of dormancy and to our knowledge the first time apple has been shown to strongly respond to short daylength as a result of the insertion of a transgene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AP2 :

Apetala2

CBF or CBF/DREB :

C-repeat binding factor

ERF :

Ethylene response factor

DRE/CRT/LTRE :

Dehydration responsive element/C-repeat/low temperature responsive element

COR :

Cold-regulated genes

RT-qPCR:

Reverse transcription, quantitative real-time PCR

SD:

Short daylength

LD:

Long daylength

LT:

Low temperature

HT:

High temperature

References

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Wisniewski ME, Scorza R (1992) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). 1. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol 99:1562–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 50- region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold, drought, and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Ball MC, Hill MJ (2009) Elevated atmospheric CO2 concentrations enhance vulnerability to frost damage in a warming world. In: Gusta L, Wisniewski M, Tanino K (eds) Plant cold hardiness: from the laboratory to the field. CAB International, Cambridge, pp 183–189

    Chapter  Google Scholar 

  • Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Renaut J, Farrell RE Jr (2009) Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230:107–118

    Article  CAS  PubMed  Google Scholar 

  • Belknap WR, Rockhold DR, McCue KF (2008) pBINPLUS/ARS: an improved plant transformation vector based on pBINPLUS. BioTechniques 44:753–756

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch.] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genom 4:485–507

    Article  Google Scholar 

  • Bolar JP, Hanke V, Norelli JL, Aldwinckle HS (1998) An efficient method for rooting and acclimation of micropropagated apple cultivars. HortScience 33:1251–1252

    Google Scholar 

  • Borejsza-Wysocka EE, Norelli JL, Ko K, Aldwinckle HS (1999) Transformation of authentic M.26 for enhanced resistance to fire blight. Acta Hort 489:259–266

    Google Scholar 

  • Champ KI, Febres VJ, Moore GA (2007) The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol Plant 129:529–541

    Article  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2006) Gene regulation during cold acclimation in plants. Phys Plant 126:52–61

    Article  CAS  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  CAS  PubMed  Google Scholar 

  • El Kayal W, Navarro M, Marque G, Keller G, Teulières C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57:2455–2469

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Phys 137:961–968

    Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Phys 124:1854–1865

    Article  CAS  Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Change Biol 16:1082–1106

    Article  Google Scholar 

  • Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 Eastern US Spring Freeze: increased cold damage in a warming world? BioScience 58:253–262

    Article  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 120:639–648

    Article  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26

    Article  PubMed Central  PubMed  Google Scholar 

  • Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Hort 115:309–314

    Article  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Phys 25:109–114

    Article  CAS  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Method 1:13

    Article  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res 27:297–300

    Google Scholar 

  • Hsieh T-H, Lee J-T, Yang P-T, Chiu L-H, Chang Y-Y, Wang Y-C, Chan M-T (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Phys 129:1086–1094

    Article  CAS  Google Scholar 

  • Hua J (2009) From freezing to scorching, transcriptional responses to temperature variations in plants. Curr Opin Plant Biol 12:568–573

    Article  CAS  PubMed  Google Scholar 

  • Ibañez C, Kozarewa I, Johansson M, Ögren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Phys 153:1823–1833

    Article  Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17:287–291

    Article  CAS  Google Scholar 

  • Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J Plant Phys 161:1171–1176

    Article  CAS  Google Scholar 

  • Ko K, Norelli JL, Reynoird J-P, Aldwinckle HS, Brown SK (2002) T4 lysozyme and attacin genes enhance resistance of transgenic ‘Galaxy’ apple against Erwinia amylorvora. J Am Soc Hort Sci 127:515–519

    CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4:e14

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Phys 140:411–432

    Article  CAS  Google Scholar 

  • Navarro M, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulières C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60:2713–2724

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Norelli JL, Aldwinckle HS, Beer SV (1988) Leaf wounding increases efficiency of Agrobacterium-mediated transformation of apple. Phytopathology 78:1292–1297

    Article  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salina J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. PNAS 101:3985–3990

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Payton P, Webb R, Konyeyev D, Allen R, Holaday SA (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Expt Bot 52:2345–2354

    Article  CAS  Google Scholar 

  • Pino M-T, Skinner JS, Jeknić Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406

    Article  CAS  PubMed  Google Scholar 

  • Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hort Sci 135:40–48

    Google Scholar 

  • Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) Evergreen peach, its inheritance and dormant behavior. J Am Soc Hort Sci 119:789–792

    Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Springer, Berlin

    Book  Google Scholar 

  • Sharabi-Schwanger M, Samach A, Porat R (2010a) Overexpression of the CBF2 transcriptional activator in Arabidopsis counteracts hormone activation of leaf senescence. Plant Signal Behav 5:1–4

    Article  Google Scholar 

  • Sharabi-Schwanger M, Lers A, Samach A, Guy CL, Porat R (2010b) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273

    Article  Google Scholar 

  • Thomashow MF, Gilmour SJ, Stockinger EJ, Jaglo-Ottosen K, Zarka DG (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Phys Plant 112:171–175

    Article  CAS  Google Scholar 

  • Ubi BE, Sakamot D, Ban Y, Shimada Y, Ito A, Nakajima I, Takemura Y, Tamura F, Saito T, Moriguchi T (2010) Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. J Am Soc Hort Sci 135:174–182

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica). Nat Genet 42:833–841

    Article  CAS  PubMed  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181

    Article  CAS  Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wisniewski M, Bassett C, Gusta L (2003) An overview of cold hardiness in woody plants: seeing the forest through the trees. HortScience 38:952–959

    Google Scholar 

  • Wisniewski M, Bassett CL, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plant 133:298–317

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought, and abscisic acid. Plant Cell Environ 29:1410–1421

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang W, Liu X-D, Chi X-J, Wu C-A, Li Y-Z, Song L-L, Liu X-M, Wang Y-F, Wang F-W, Zhang C, Liu Y, Zong J-M, Li H-Y (2010) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta. doi:10.1007/s00425-010-1279-6

  • Zhang MIN, Willison JHM (1987) An improved conductivity method for the measurement of frost hardiness. Can J Bot 65:710–715

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Corrine Pierce for her assistance in developing and propagating the transgenic lines of apple and Erik Burchard for his technical assistance in all aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wisniewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisniewski, M., Norelli, J., Bassett, C. et al. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233, 971–983 (2011). https://doi.org/10.1007/s00425-011-1358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1358-3

Keywords

Navigation