Skip to main content
Log in

Promoter Analysis for Three Types of EUL-Related Rice Lectins in Transgenic Arabidopsis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In this study, the promoter activity for three types of Euonymus-related lectins (EUL) from rice, further referred to as OrysaEULS2, OrysaEULS3, and OrysaEULD1A was analyzed. In silico promoter analyses showed that the EUL promoters from rice contain next to the typical promoter elements some motifs that are considered to be stress-responsive elements. Furthermore, Arabidopsis thaliana plants were transformed with a promoter::β-glucuronidase (GUS) construct for each of the proteins under study. Subsequently, one-insertion homozygous lines were selected and analyzed for GUS activity. Experiments were performed under normal growth conditions or after application of different stress conditions, in particular treatments with 150 mM NaCl, 100 mM mannitol, and 100 μM abscisic acid (ABA) for 24 h. GUS activity was detected with the OrysaEULS3 and OrysaEULD1A promoters especially in the cotyledons and the young true leaves, respectively, but not with the OrysaEULS2 promoter. The activity of OrysaEULS3 and OrysaEULD1A promoters was increased after ABA and mannitol treatments but decreased after NaCl treatment. We hypothesize that the Euonymus-related rice proteins have a role in sensing and responding to external stresses as well as in the growth of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EUL:

Euonymus lectin

GUS:

β-Glucuronidase

OSR40:

Oryza sativa repeats 40 kDa

TSS:

Transcription start site

References

  • Al Atalah B, Fouquaert E, Vanderschaeghe D, Proost P, Balzarini J, Smith DF, Rougé P, Lasanajak Y, Callewaert N, Van Damme EJM (2011) Expression analysis of the nucleocytoplasmic lectin ‘Orysata’ from rice in Pichia pastoris. FEBS J 278:2064–2079

    Article  PubMed  CAS  Google Scholar 

  • Al Atalah B, Rougé P, Smith DF, Proost P, Lasanajak Y, Van Damme EJM (2012) Expression analysis of a type S2 EUL-related lectin from rice in Pichia pastoris. Glycoconj J 29:467–479

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 1158–1249

    Google Scholar 

  • Chen Y, Peumans WJ, Hause B, Bras J, Kumar M, Proost P, Barre A, Rougé P, Van Damme EJM (2002) Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide binding lectin in tobacco leaves. FASEB J 16:905–907

    PubMed  CAS  Google Scholar 

  • Clough DJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Delporte A, Lannoo N, Vandenborre G, Ongenaert M, Van Damme EJM (2011) Jasmonate response of the Nicotiana tabacum agglutinin promoter in Arabidopsis thaliana. Plant Physiol Biochem 49:843–851

    Article  PubMed  CAS  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Wahid A, Basra SMA, Din ID (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195:262–269

    Article  CAS  Google Scholar 

  • Fouquaert E, Peumans WJ, Smith DF, Proost P, Savvides SN, Van Damme EJM (2008) The old Euonymus europaeus agglutinin represents a novel family of ubiquitous plant proteins. Plant Physiol 147:1316–1324

    Article  PubMed  CAS  Google Scholar 

  • Fouquaert E, Peumans WJ, Vandekerckhove TTM, Ongenaert M, Van Damme EJM (2009) Proteins with an Euonymus lectin-like domain are ubiquitous in Embryophyta. BMC Plant Biol 9:136

    Article  PubMed  Google Scholar 

  • Fouquaert E, Van Damme EJM (2012) Promiscuity of the Euonymus carbohydrate-binding domain. Biomolecules 2:415–434

    Article  CAS  Google Scholar 

  • Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20⁄AN1 zinc-finger containing stress-associated proteins (SAP1⁄11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732

    Article  PubMed  CAS  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  PubMed  CAS  Google Scholar 

  • Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2:19

    Article  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Imanishi S, Kito-Nakamura K, Matsuoka K, Morikami A, Nakamura K (1997) A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant Cell Physiol 38:643–652

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006) Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants. FEBS J 273:5245–5260

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  • Khurana R, Kapoor S, Tyagi AK (2013) Spatial and temporal activity of upstream regulatory regions of rice anther-specific genes in transgenic rice and Arabidopsis. Transgenic Res 22:31–46

    Article  PubMed  CAS  Google Scholar 

  • Kuriakose B, Arun V, Gnanamanickam SS, Thomas G (2009) Tissue-specific expression in transgenic rice and Arabidopsis thaliana plants of GUS gene driven by the 50 regulatory sequences of an anther specific rice gene YY2. Plant Sci 177:390–397

    Article  CAS  Google Scholar 

  • Lannoo N, Peumans WJ, Van Damme EJM (2006) The presence of jasmonate-inducible lectin genes in some but not all Nicotiana species explains a marked intragenus difference in plant responses to hormone treatment. J Exp Bot 57:3145–3155

    Article  PubMed  CAS  Google Scholar 

  • Lannoo N, Vandenborre G, Miersch O, Smagghe G, Wasternack C, Peumans WJ, Van Damme EJM (2007) The jasmonate-induced expression of the Nicotiana tabacum leaf lectin. Plant Cell Physiol 48:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Lannoo N, Van Damme EJM (2010) Nucleocytoplasmic plant lectins. Biochim Biophys Acta 1800:190–201

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Moons A, Gielen J, Vandekerckhove J, Van der Straeten D, Gheysen G, Montagu MV (1997) An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta 202:443–454

    Article  PubMed  CAS  Google Scholar 

  • Morris RT, O’Connor TR, Wyrick JJ (2008) Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics 24:2915–2917

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa R, Yasokawa D, Okumura Y, Nagashima K (2000) Cloning and sequence analysis of cDNA coding for a lectin from Helianthus tuberosus callus and its jasmonate-induced expression. Biosci Biotechnol Biochem 64:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:846–851

    Article  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Serraj R, Kumar A, McNally KL, Slamet-Loedin I, Bruskiewich R, Mauleon R, Cairns J, Hijmans RJ (2009) Improvement of drought resistance in rice. Adv Agron 103:41–99

    Article  CAS  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117

    Article  PubMed  CAS  Google Scholar 

  • Shiyou L, Hongya G, Yuan X, Wang X, Ai-Min W, Lijia Q, Liu J-Y (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 16:177–191

    Article  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H, Kubooka H, Matsuya A, Nakaoka H, Saichi N, Sanbonmatsu R, Sato Y, Shinso Y, Suzuki M, Takeda J, Tanino M, Todokoro F, Yamaguchi K, Yamamoto N, Yamasaki C, Imanishi T, Okido T, Tada M, Ikeo K, Tateno Y, Gojobori T, Lin YC, Wei FJ, Hsing YI, Zhao Q, Han B, Kramer MR, McCombie RW, Lonsdale D, O'Donovan CC, Whitfield EJ, Apweiler R, Koyanagi KO, Khurana JP, Raghuvanshi S, Singh NK, Tyagi AK, Haberer G, Fujisawa M, Hosokawa S, Ito Y, Ikawa H, Shibata M, Yamamoto M, Bruskiewich RM, Hoen DR, Bureau TE, Namiki N, Ohyanagi H, Sakai Y, Nobushima S, Sakata K, Barrero RA, Sato Y, Souvorov A, Smith-White B, Tatusova T, An S, An G, OOta S, Fuks G, Fuks G, Messing J, Christie KR, Lieberherr D, Kim H, Zuccolo A, Wing RA, Nobuta K, Green PJ, Lu C, Meyers BC, Chaparro C, Piegu B, Panaud O, Echeverria M (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36:1028–1033

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJM, Peumans WJ, Barre A, Rougé P (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692

    Article  Google Scholar 

  • Van Damme EJM, Lannoo N, Fouquaert E, Peumans WJ (2004a) The identification of inducible cytoplasmic/nuclear carbohydrate binding proteins urges to develop novel concepts about the role of plant lectins. Glycoconj J 20:449–460

    Article  PubMed  Google Scholar 

  • Van Damme EJM, Barre A, Rougé P, Peumans WJ (2004b) Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9:484–489

    Article  PubMed  Google Scholar 

  • Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant lectins. Adv Bot Res 48:107–209

    Article  Google Scholar 

  • Van Damme EJM, Fouquaert E, Lannoo N, Vandenborre G, Schouppe D, Peumans WJ (2011) Novel concepts about the role of lectins in the plant cell. In: Wu AM (ed) The molecular immunology of complex carbohydrates-3, vol 705. Springer, New York

    Chapter  Google Scholar 

  • Vandenborre G, Miersch O, Hause B, Smagghe G, Wasternack C, Van Damme EJM (2009) Spodoptera littoralis-induced lectin expression in tobacco. Plant Cell Physiol 50:1142–1155

    Article  PubMed  CAS  Google Scholar 

  • Wang YQ, Zhu SY, Wang Y, Zhang MY (2007) Tissue and inducible expression of a rice glutathione transporter gene promoter in transgenic Arabidopsis. Bot Stud 48:35–41

    CAS  Google Scholar 

  • Yang Z, Lu Q, Wen X, Chen F, Lu (2012) Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis. Biochem Biophys Res Commun 418:565–570

    Article  PubMed  CAS  Google Scholar 

  • Yong WD, Xu YY, Xu WZ, Wang X, Li N, Wu JS, Liang TB, Chong K, Xu ZH, Tan KH, Zhu ZQ (2003) Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217:261–270

    PubMed  CAS  Google Scholar 

  • Zeng L, Shannon MC, Grieve CM (2002) Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 127:235–245

    Article  CAS  Google Scholar 

  • Zhang W, Peumans WJ, Barre A, Astoul CH, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AA, Van Damme EJM (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded primarily by the Fund for Scientific Research—Flanders (FWO grant G.0022.08), the Research Council of Ghent University (project BOF10/GOA/003), and the Hercules Foundation. Bassam Al Atalah is a recipient of a doctoral grant from the Special Research Council of Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els J. M. Van Damme.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1

(DOCX 21 kb)

Supplementary file 2

(DOCX 19 kb)

Supplementary Fig. 1

Histochemical analysis of GUS activity in Arabidopsis seedlings harboring a 35S promoter::GUS construct. Images were taken using a Nikon eclipse TE2000-e epi-fluorescence Microscope (Nikon Benelux, Brussels, Belgium) and a Leica microscope (Leica, Nussloch, Germany) (PPTX 264 kb)

Supplementary Fig. 2

Histochemical analysis of GUS activity in Arabidopsis seedlings. No GUS staining was detected for Arabidopsis plants harbouring the OrysaEULS2 promoter. Non-treated and stress-treated plant tissues did not show any GUS activity. Some representative pictures are shown for each plant stage (a). GUS staining was absent in the leaf, stem and root samples analyzed for developmental stages 4 and 5 of Arabidopsis plants expressing each of the EUL promoter constructs.. Some representative pictures are shown for Arabidopsis plants harboring the OrysaEULD1A promoter at developmental stage 5 (b). Images were taken using a Nikon eclipse TE2000-e epi-fluorescence Microscope (Nikon Benelux, Brussels, Belgium) and a Leica microscope (Leica, Nussloch, Germany) (PPTX 493 kb)

Supplementary Fig. 3

Comparative analysis of GUS activity under OrysaEULD1A promoter. GUS staining was analyzed in seedlings of plant stage 1 grown on MS (a), or after mannitol (b) and ABA (c) treatments (PPTX 1.50 MB)

Supplementary Fig. 4

Comparative analysis of GUS activity under OrysaEULS3 promoter. GUS staining was analyzed in seedlings of plant stage 2 grown on MS (a), or after mannitol (b) and ABA (c) treatments (PPTX 188 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Atalah, B., Fouquaert, E. & Van Damme, E.J.M. Promoter Analysis for Three Types of EUL-Related Rice Lectins in Transgenic Arabidopsis . Plant Mol Biol Rep 31, 1315–1324 (2013). https://doi.org/10.1007/s11105-013-0611-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0611-2

Keywords

Navigation