Skip to main content
Log in

Diversity Assessment of Turkish Maize Landraces Based on Fluorescent Labelled SSR Markers

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Landraces of maize represent a valuable genetic resource for breeding and genetic studies. Since 1970, landraces have been collected from all over Turkey, but the genetic diversity represented in this collection is still largely unknown. In this study, a sample of 98 landraces sampled from 45 provinces of Turkey was assessed genotypically at 28 simple sequence repeat (SSR) loci and phenotypically for 19 morphological traits. The landraces varied significantly for all the latter traits. A total of 172 SSR alleles were detected, giving a mean of 6.21 alleles per locus. The genetic distance between pairs of landraces ranged from 0.18 to 0.63, with a mean of 0.35. Positive and negative correlation exists among different morphological and agronomic traits. Positive association among different traits showed that improvement of one character may simultaneously improve the other desired trait. Based on UPGMA dendrogram and Neighbor-Net (NNET) analyses from both morphological traits and SSR data, respectively, it is obvious that maize landraces from the same geographical region were often placed in different clusters, indicating that grouping based on genetic parameters was not closely related to the geographic origin. The wide diversity present in Turkish maize landraces could be used as genetic resource in designing maize breeding program for developing new cultivars adapted to different geographic and climatic conditions, and may also contribute to worldwide breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angelo M, Pinheiro de Carvalho A, Ganança JFT, Abreu I, Sousa NF, Marques dos Santos TM, Vieira MRC, Motto M (2008) Evaluation of maize (Zea mays L.) diversity on the Archipelago of Madeira. Genet Resour Crop Evol 55:221–223

    Article  Google Scholar 

  • Angioi SA, Rau D, Nanni L, Bellucci E, Papa R, Attene G (2011) The genetic make of the European landraces of the common bean. Plant Genetic Resources: Characterization and Utilization 1–5. doi:10.1017/S1479262111000190

  • Azar C, Mather DE, Hamilton RI (1997) Maize landraces of the St. Lawrance-Great lakes region of North America. Euphytica 98:141–148

    Article  Google Scholar 

  • Baloch FS, Kurt C, Arıoğlu H, Özkan H (2010) Assaying of diversity among soybean (Glycin max (L.) merr.) and peanut (Arachis hypogaea L.) genotypes at DNA level. Turk J Agric For 34:285–301

    Google Scholar 

  • Bang TC, Raji AA, Ingelbrecht IL (2011) A multiplex microsattelite marker kit for diversity assessment for large cassava (Manihot esculenta Crantz) germplasm collection. Plant Mol Biol Rep. doi:10.1007/s11105-010-0273-2

  • Baraket G, Chatti K, Saddoud O, Abdelkarim AB, Mars M, Trifi M, Hannachi AS (2011) Comparative SSR and AFLP markers for evaluation of genetic diversity and conservation of fig. Ficus carica. Genetic resources in Tunisia. Plant Mol Biol Rep 29:171–184

    Article  Google Scholar 

  • Beyene Y, Botha AM, Myburg AA (2005) A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. Afr J Biotechnol 4(7):586–595

    CAS  Google Scholar 

  • Beyene Y, Botha AM, Myburg AA (2006) Genetic diversity among traditional Ethiopian highland maize accessions assessed by simple sequence repeat (SSR) markers. Genet Resour Crop Evol 00:1–10

    Google Scholar 

  • Bogyo BT, Proceddu E, Perrino P (1990) Analysis of sampling strategies for collecting genetic materials. Econ Bot 34:11–86

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restricted fragment length polymorphism. Am J Human Genet 23:314–331

    Google Scholar 

  • Bourguiba H, Krichen L, Audergon JM, Khadari B, Trifi-Farah N (2010) Impact of mapped SSR markers on the genetic diversity of apricot (Prunus armeniaca L.) in Tunisia. Plant Mol Biol Rep 28:578–587

    Article  Google Scholar 

  • Bracco M, Lia VV, Gottlieb AM, Hernandez JC, Poggio L (2009) Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina. Genetica 135:39–49

    Article  PubMed  Google Scholar 

  • Brandolini A, Brandolini A (2001) Classification of Italian maize (Zea mays L.) germplasm. Plant Genet Resour Newslett 126:1–11

    Google Scholar 

  • Brown AHD (1978) Isozymes, plant population genetics structure and genetic conservation. Theor Appl Genet 52:145–157

    Article  Google Scholar 

  • CIMMYT/IBPGRI (1991) Descriptor of maize, Rome

  • Choukan R, Hossainzadeh A, Ghannadha MR, Talei AR, Mohammadi SA, Warburton ML (2006) Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crops Res 95:212–222

    Article  Google Scholar 

  • Dubreuil P, Rebourg C, Merlino M, Charcosset A (1999) The DNA pooled sampling strategy for estimating RFLP diversity of maize population. Plant Mol Biol Rep 17:123–138

    Article  CAS  Google Scholar 

  • Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large scale bulk SSR genotyping and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh leaf tissue. Focus 12:13–15

    Google Scholar 

  • Ege H, Karahocağil P (2001) Yemlık Tahıllar Arpa, Mısır durum ve tahmin 2001/2002 TEAE Yayını No 82, Ankara

  • Eschholz TW, Peter R, Stamp P, Hund A (2008) Genetic diversity of Swiss maize (Zea mays L) assessed with individual and bulks on agarose gel. Genet Resour Crop Evol 55:971–983

    Article  Google Scholar 

  • Enoki H, Sato H, Koinuma K (2002) SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet 104:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT (2009) http://faostat.fao.org/

  • Gouesnard B, Dallard J, Panouille A, Boyat A (1997) Classification of French maize populations based on morphological traits. Agronomie 17:491–498

    Article  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Hartings H, Berardo N, Mazzinelli GF, Valoti P, Verderio A, Motto M (2008) Assessment of genetic diversity and relationship among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling. Theor Appl Genet 117:831–842

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Huh MK, Moon SG (2001) Chlorophyll deficient gene and morphological variations in Korean populations of maize (Zea mays). J Plant Biol 44(3):141–147

    Article  CAS  Google Scholar 

  • Ilarslan R, Kaya Z, Tolun AA, Bretting PK (2001) Genetic variability among Turkish Pop, Flint and Dent corn (Zea mays L. spp. mays) races: enzyme polymorphism. Euphytica 122:171–179

    Article  CAS  Google Scholar 

  • Ilarslan R, Kaya Z, Kandemir I, Bretting PK (2002) Genetic variability among Turkish flint, pop and dent corn (Zea mays L) races. Morphological and agronomic traits. Euphytica 128:173–182

    Article  CAS  Google Scholar 

  • Jambrovic A, Simic D, Ledencan T, Zdunic Z, Brkic I (2008) Genetic diversity among maize (Zea mays L.) inbred lines in Eastern Croatia. Period Biol 110(3):251–255

    Google Scholar 

  • Janick J, Caneva G (2005) The first images of maize in Europe. Maydica 50:71–80

    Google Scholar 

  • Jarvis DI, Meyer L, Klemick H, Guarino L, Smale M, Brown AHD, Sadiki M, Sthapit B, Hodgkin T (2000) Training guide for in situ conservation on-farm. Biodiversity International. International Plant Genetic Resources Institute, p 161

  • Kırtok Y (1998) Mısır Üretimi ve Kullanımı. Kocaoluk Basımı ve Yayınevi (In Turkish)

  • Kün E (1985) Tahıllar II (Sıcak iklim tahıllar). Ankara Üniversitesi Ziraat Fakultesi Yayınları 953. Ders Kitabı 275. Ankara Üniv. Basımevi, Ankara (In Turkish)

  • Kün E (1994) Tahıllar II (Sıcak iklim tahıllar). Ankara Üniversitesi Ziraat Fakultesi Yayınları 1360:141–206 (In Turkish)

    Google Scholar 

  • Laborda PR, Oliveira KM, Garcia AAF, Paterniani MEAGZ, de Souza AP (2005) Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? Theor Appl Genet 111:1288–1299

    Article  PubMed  CAS  Google Scholar 

  • Legesse BW, Myburg AA, Pixley KV, Botha AM (2007) Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144:10–17

    Article  PubMed  CAS  Google Scholar 

  • Leng ER, Tavcar A, Trifunovic V (1962) Maize of Southeastern Europe and its potential value in breeding programs elsewhere. Euphytica 11:263–272

    Google Scholar 

  • Liu YJ, Huang YB, Rong TZ, Tian ML, Yang JP (2005) Comparative analysis of genetic diversity in land-races of waxy maize from Yunnan and Guizhou using SSR markers. Sci Agric Sin 4:648–653

    Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    Article  PubMed  CAS  Google Scholar 

  • Magorokosho C (2006). Genetic diversity and field performance of maize varieties from Zimbave, Zambia and Malawi. Dissertation, Texas A&M University, South Africa

  • Okumus A (2007) Genetic variation and relationship between Turkish flint maize landraces by RAPD markers. Am J Agri Biol Sci 2(2):49–53

    Article  Google Scholar 

  • Ögel B (2000) Türk Kültür tarihine Giriş Cilt-II. ‘Türk köy ve Şehir hayatı GökTürklerden Osmanlılara’. T.C. Kültür Bakanlığı Yayınları/638 Yayınlar Başkalığı Kültür Eserleri Dizisi/46 (in Turkish)

  • Özkan H, Kafkas S, Ozer MS, Brandolini A (2005) Genetic relationship among South-East Turkey wild barley population and sampling strategies of Hordeum spontaneum. Theor Appl Genet 112:12–20

    Article  PubMed  Google Scholar 

  • Pressoir G, Berhaud J (2004) Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 92:88–94

    Article  PubMed  CAS  Google Scholar 

  • Qi-Lun Y, Ping F, Shu-Xian Z (2008) Constructing a core collection for maize (Zea mays L.) landrace from Wuling mountain region in China. Agr Sci China 7(12):1423–1432

    Google Scholar 

  • Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145

    Google Scholar 

  • Rebourg C, Gousnard B, Charcosset A (2001) Large scale molecular analysis of European maize populations. Relationship with morphological variation. Heredity 86:576–584

    Article  Google Scholar 

  • Reif JC, Hamrit S, Heckenberger M, Schipprack W, Peter Maurer H, Bohn M, Melchinger AE (2005) Genetic structure and diversity of European flint maize populations determined with SSR analysis of individual and bulks. Theor Appl Genet 111:906–913

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (2004) NTSYS-pc ver 2.11 T. Exter Software. Satauket, NY

  • Ruiz de Galarreta JI, Alvarez A (2001) Morphological classification of maize landraces from Northern Spain. Genet Resour Crop Evol 48:391–400

    Article  Google Scholar 

  • Saeed A, Hovsepyan H, Darvishzadeh R, Imtiaz M, Panguluri SK, Nazaryan R (2011) Genetic diversity of Iranian accession, improved lines of chickpea (Cicer arietinum L.) and their wild relatives using simple sequence repeats. Plant Mol Biol Rep. doi:10.1007/s11105-011-0294-5

  • SAS Institute (2002) The SAS system for windows, release 9.0. SAS Institute Inc, Cary

    Google Scholar 

  • Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and relationships in maize using agarose gel system. Crop Sci 38:1088–1098

    Article  Google Scholar 

  • Sharma L, Prasanna BM, Ramesh B (2010) Analysis of phenotypic and microsattelite-based diversity of maize landraces in India, especially from the North East Himalayan region. Genetica. doi:10.1007/s10709-010-9436-1

  • Sharma SS, Negi MS, Sinha P, Kumar K, Tripathi SB (2011) Assessment of genetic diversity of biodiesel species pongamia pinnata accessions using AFLP and three endonuclease-AFLP. Plant Mol Biol Rep 29:12–18

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescentlabeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Smith JSC, Smith OS (1992) Fingerprinting crop varieties. Adv Agron 47:85–140

    Article  CAS  Google Scholar 

  • Taşdan K (2005) Maize market in turkey. PhD thesis, Institute of Natural and Applied Sciences University of Çukurova, Adana, Turkey

  • Uzun A, Yesiloglu T, Polat I, Kacar YA, Gulsen O, Yildirim B, Tuzcu O, Tepe S, Canan I, Anil S (2011) Evaluation of genetic diversity in lemon and some of their relatives based on SRAP and SSR markers. Plant Mol Biol Rep. doi:10.1007/s11105-010-0277-y

  • Warburton ML, Xia XC, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisintong D (2002) Genetic characterization of CIMMYT maize inbred lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Article  Google Scholar 

  • Wu YS, Zheng YL, Sun R, Wu SY, Gu HB, Bi YH (2004) Genetic diversity of waxy corn and popcorn landraces in Yunan by SSR markers. Acta Agron Sin 30:36–42

    CAS  Google Scholar 

  • Xia X, Reif J, Hoisington D, Melchinger A, Frisch M, Warburton M (2004) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop Sci 44:2230–2237

    Article  Google Scholar 

  • Xie C, Warburton M, Li M, Li X, Xiao M, Hao Z, Zhao Q, Zhang S (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed 21:407–418

    Article  Google Scholar 

  • Yao Q, Yang K, Pan G, Rong T (2007) Genetic diversity of maize (Zea mays L.) landraces from Southwest China based on SSR data. J Genet Genom 34(9):851–860

    Article  CAS  Google Scholar 

  • Yücel C, Baloch FS, Özkan H (2009) Genetic analysis of some physical properties of bread wheat grain (Triticum aestivum L. em Thell). Turk J Agric For 33:525–535

    Google Scholar 

  • Zeven AC (1998) Landraces: a review of definition and classification. Euphytica 104:127–139

    Article  Google Scholar 

Download references

Acknowledgement

We thank the Menemen gene bank (Aegean Agricultural Research Institute, Izmir, Turkey) for the kind provision of landrace seed stocks. The authors express their gratitude to TÜBİTAK (The Scientific and Technological Research Council of Turkey, TOVAG-104O186) and University of Cukurova, Scientific Research Projects Unit (ZF2004BAP17) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Özkan.

Additional information

This article is dedicated to our dear colleague, the late Prof. Dr. Ahmet Can Ülger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Means and standard deviation for: days to tasseling (DTS), plant height (PHT), ear length (EHT), stem diameter (SDI), angel of uppermost leaf (AUL), number of leaves (NL) and leaf area index (LEA) of Turkish maize landraces (DOC 158 kb)

Supplementary Table 2

Means and standard deviation for: tassels on primary branches (PBNT), ear length (ELG), ear diameter (EDI), ear rows number (ERN), number of kernels per row (NKR) and total number of kernels per ear (TNKE) of Turkish maize landraces (DOC 152 kb)

Supplementary Table 3

Means and standard deviation for: ear peduncle length (EPLG), ear weight (EWE), individual plant yield (PYL), kernel length (KLG), kernel width (KWD) and kernel thickness (KT) of Turkish maize landraces (DOC 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cömertpay, G., Baloch, F.S., Kilian, B. et al. Diversity Assessment of Turkish Maize Landraces Based on Fluorescent Labelled SSR Markers. Plant Mol Biol Rep 30, 261–274 (2012). https://doi.org/10.1007/s11105-011-0332-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0332-3

Keywords

Navigation