Skip to main content

Advertisement

Log in

Modulating rhizosphere colonisation, plant growth, soil nutrient availability and plant defense enzyme activity through Trichoderma viride-Azotobacter chroococcum biofilm inoculation in chickpea

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Establishment of inoculated biofilms on root surfaces and their effect on plant enzyme activities and nutrient availability in the rhizosphere are less investigated. Two beneficial inoculants- Trichoderma spp. and Azotobacter spp., and the biofilm developed using them as partners, were evaluated in chickpea crop. The hypothesis tested was that the efficacy of the fungal-based bacterial biofilm in colonizing the root and rhizosphere may be better, as compared to their individual inoculation.

Methods

Scanning electron microscopy and root staining illustrated the colonisation of developed T. viride (Tv)A. chroococcum (Az) biofilm and their partners. Inoculation effects were analysed on selected plant growth parameters, soil nutrients, plant enzyme activities and organic acid exudations in the rhizosphere soil.

Results

Tv-Az biofilm was observed to exhibit better colonization in the rhizosphere and rhizoplane of chickpea, as compared to single inoculation. Significant enhancement of 30–45% in root volume, root proteins, root-shoot ratio, exudation of succinic and fumaric acids, soil available nutrients, along with two fold enhancement in the activity of plant enzymes was recorded, as compared to recommended doses of NPK fertilizers.

Conclusions

Tv-Az biofilm is a promising biofertilizing option for enhancing plant growth parameters, available soil nutrients, along with providing a savings of 25% nitrogenous fertilizers in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EPS:

Extracellular polymeric substances

PO:

Peroxidase

PPO:

Polyphenol oxidase

CAT:

Catalase

PEPC:

Phosphoenol pyruvate carboxylase

PAL:

L-phenylalanine ammonia lyase

DHA:

Dehydrogenase activity

RDF:

Recommended dose of NPK fertilizers

FDPK:

Full dose of phosphorus and potassium fertilizers

Az:

Azotobacter chroococcum

Tv:

Trichoderma viride

Tv-Az:

Trichoderma viride-Azotobacter chroococcum biofilm

References

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Article  Google Scholar 

  • Babu S, Bidyarani N, Chopra P, Monga D et al (2015) Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. Eur J Plant Pathol 142:345–362

    Article  CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues plant–microbe interactions. Curr Opin Microbiol 20:642–650

    CAS  Google Scholar 

  • Bazghaleh N, Hamel C, Gan Y, Taran B, Knight JD (2015) Genotype-specific variation in the structure of root fungal communities is related to chickpea plant productivity. Appl Environ Microbiol 81:2368–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth promoting rhizobacteria. Biocontrol Sci Tech 11:557–574

    Article  Google Scholar 

  • Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ et al (2015) Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol 17:2099–2113

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1970) Katalase. In: Bergmeyer HU (ed) Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, pp 439–440

    Google Scholar 

  • Bidyarani N, Prasanna R, Babu S, Hossain F et al (2016) Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188:97–105

    Article  PubMed  Google Scholar 

  • Bogino PC, Oliva MM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in Plant-Bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of Protein-Dye Binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T et al (2013) Trichoderma-Plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog e1003221:9

    Google Scholar 

  • Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D et al (2013) Linking plant nutritional status to Plant-Microbe interactions. PLoS One 8:e68555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  • Chen Y, Cao S, Chai Y, Clardy J et al (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macıas-Rodrıguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92(4):fiw036. https://doi.org/10.1093/femsec/fiw036

    Article  PubMed  Google Scholar 

  • Cooper JE (2008) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  Google Scholar 

  • Das K, Rajawat MVS, Saxena AK, Prasanna R (2016) Development of Mesorhizobium ciceri-based biofilms and analyses of their antifungal and plant growth promoting activity in chickpea challenged by Fusarium Wilt. Indian J Microbiol. https://doi.org/10.1007/s12088-016-0610-8

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Di Palma AA, Pereyra CM, Ramirez LM, Xiqui Vazquez ML et al (2013) Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense. FEMS Microbiol Lett 338:77–85

    Article  Google Scholar 

  • Drogue B, Combes-Meynet E, Moënne-Loccoz Y, Wisniewski-Dyé F et al (2013) Control of the cooperation between plant growth-promoting rhizobacteria and crops by rhizosphere signals. In: deBruijn FJ (ed) Molecular Microbial Ecology of the Rhizosphere Vol. 1 and 2. Wiley, USA, pp 281–294

    Google Scholar 

  • Finkel OM, Castrillo G, Paredes SH, Gonzalez IS et al (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Gauri SS, Mandal SM, Pati BR (2012) Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 95:331–338

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Sameer Kumar CV (2016) Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Spring 5:1882

    Article  Google Scholar 

  • Hohmann P, Jones EE, Hill RA, Stewart A (2011) Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biol 115:759–767

    Article  PubMed  Google Scholar 

  • Hunter P (2016) Plant microbiomes and sustainable agriculture. EMBO Rep 17:1696–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janczarek M, Kutkowska J, Piersiak T, Skorupska A (2010) Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-284

  • Jankowski SJ, Freiser H (1961) Flame photometric methods of determining the Potassium Tetraphenylborate. Anal Chem 33:773–775

    Article  Google Scholar 

  • Jayalakshmi SK, Raju S, Usha Rani S, Benagi V et al (2009) Trichoderma harzianum L1 as a potential source for lytic enzymes and elicitor of defense responses in chickpea (Cicer arietinum L.) against wilt disease caused by Fusarium oxysporum f. sp. ciceri. Aust J Crop Sci 3:44–52

    CAS  Google Scholar 

  • Jennings PH, Brannaman BL, Zacheile FP Jr (1969) Peroxidase and polyphenoloxidase activity associated with Helminthosporium leaf spot of maize. Phytopathology 59:963–967

    CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere - a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108:11–26

    Article  Google Scholar 

  • Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB et al (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth – promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Ling N, Raza W, Ma J, Huang Q et al (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47:374–379

    Article  CAS  Google Scholar 

  • Lowe LE (1994) Total and labile polysaccharide analysis of soil. In: Carter MR (ed) Soil sampling and methods of analysis, Canadian Society of Soil Science. CRC Press, Boca Raton, pp 373–376

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Chin AWTF, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. A Van Leeuw J Microb 81:373–383

    Article  CAS  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Mrkovack N, Milic V (2001) Use of Azotobacter chroococcum as potentially useful in agricultural application Ann. Microbiology 51:145–158

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available P. USDA. Circular 939:1–19

    Google Scholar 

  • O'Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp 47:1–2

    Google Scholar 

  • Parmer N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  Google Scholar 

  • Pérez-Montano F, Alías-Villegas C, Bellogín RA, del Cerro P et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Prasanna R, Pattnayak S, Sugitha TCK, Nain L et al (2011) Development of cyanobacterium based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiol 56:49–58

    Article  CAS  Google Scholar 

  • Prasanna R, Kumar A, Babu S, Chawla G et al (2013a) Deciphering the biochemical spectrum of novel cyanobacterium-based biofilms for use as inoculants. Biol Agric Hortic 29:145–158

    Article  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S et al (2013b) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 13:337–353

    Article  Google Scholar 

  • Prasanna R, Triveni S, Bidyarani N, Babu S et al (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366

    Article  Google Scholar 

  • Prasanna R, Hossain F, Babu S, Bidyarani N, Adak A, Verma S et al (2015) Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids. South Afr J Plant Soil 32:199–207

    Article  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C et al (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Saderi S, Corretto E et al (2017) Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant Soil 410:369–382

    Article  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.) Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Sandnes A, Eldhuset TD, Wollebæk G (2005) Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol Biochem 37:259–269

    Article  CAS  Google Scholar 

  • Sarma BK, Singh DP, Mehta S, Singh HB (2002) Plant growth-promoting rhizobacteria elicited alterations in phenolic profile of Chickpea (Cicer arietinum) infected by Sclerotium rolfsii. J Phytopathol 150:277–282

    Article  CAS  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    Article  CAS  Google Scholar 

  • Seneviratne G, Jayasekare APDA, De Silva MSDL, Abeysekera UP (2011) Developed microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biol Biochem 43:1059–1062

    Article  CAS  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS (2014) Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT Food Sci Technol 56:390–397

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Souza R, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Subbiah BV, Asija GL (1956) A rapid procedure for the determination of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S et al (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:107–116

    Article  Google Scholar 

  • Teschler JK, Zamorano-Sánchez D, Utada AS, Warner CJA et al (2015) Living in the matrix: assembly and control of Vibrio cholera Biofilms. Nat Rev Microbiol 13:255–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thekkiniath J, Paul S, Dureja P, Dhar DW (2010) Physiological studies on endorhizospheric establishment of Azotobacter chroococcum in wheat. J Basic Microbiol 50:266–273

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triveni S, Prasanna R, Saxena AK (2012) Optimization of conditions for in vitro development of Trichoderma viride-based biofilms as potential inoculants. Folia Microbiol 57:431–437

    Article  CAS  Google Scholar 

  • Triveni S, Prasanna R, Shukla L, Saxena AK (2013) Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Ann Microbiol 63:1147–1156

    Article  CAS  Google Scholar 

  • Triveni S, Prasanna R, Kumar A, Bidyarani N et al (2015) Evaluating the promise of Trichoderma and Anabaena based biofilms as multifunctional agents in Macrophomina phaseolina-infected cotton crop. Biocontrol Sci Tech 25:656–670

    Article  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R et al (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacteria) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.) Theoretical Appl Genetics 127:445–462

    Article  CAS  Google Scholar 

  • Velmourougane K, Prasanna R (2017) Influence of L-amino acids on aggregation and biofilm formation in Azotobacter chroococcum and Trichoderma viride. J Appl Microbiol. https://doi.org/10.1111/jam.13534

  • Velmourougane K, Prasanna R, Saxena AK, Singh SB et al (2017a) Modulation of growth media influences aggregation and biofilm formation between Azotobacter chroococcum and Trichoderma viride. Appl Biochem Microbiol 53:546–556

    Article  CAS  Google Scholar 

  • Velmourougane K, Prasanna R, Saxena AK (2017b) Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 57:548–573

    Article  PubMed  Google Scholar 

  • Velmourougane K, Prasanna R, Singh SB, Kumar R et al (2017c) Sequence of inoculation influences the nature of exopolymeric substances and biofilm formation in Azotobacter chroococcum and Trichoderma viride. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fix066

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker V, Couillerot O, Von Felten A, Bellvert F et al (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Weng J, Wang Y, Li J, Shen Q et al (2012) Enhanced root colonization and biocontrol activity of B. amyloliquefaciens SQR-9 by abrB gene desruption. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-012-4572-4

  • Whetten RW, Sederoff RR (1992) Phenylalanine Ammonia-Lyase from Loblolly Pine. Plant Physiol 98:380–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MX, Wedding RT (1985) Diurnal regulation of Phosphoenol pyruvate carboxylase from Crassula. Plant Physiol 77:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S et al (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Post Graduate School and Director, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI) (New Delhi, India) for providing fellowship towards the Ph.D. programme of the first author, who also is grateful to ICAR-Central Institute for Cotton Research (CICR), Nagpur for providing study leave. This investigation was supported partially by the funds from the Network Project on Microorganisms “Application of Microorganisms in Agricultural and Allied Sectors” (AMAAS) granted by Indian Council of Agricultural Research (ICAR), New Delhi to Radha Prasanna. The authors are thankful to the Division of Microbiology (IARI, New Delhi), Division of Nematology (ICAR-IARI, New Delhi), National Phytotron Facility, ICAR-IARI for making available the facilities essential for undertaking this study. We thank Dr. Y.S. Shivay, Division of Agronomy, ICAR-IARI, New Delhi for providing the facility for the soil analyses. We would like to thank Dr. Lata Nain, Principal Scientist, Division of Microbiology, ICAR-IARI, New Delhi- 110012, India for her careful review of the manuscript, as well as valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Birgit Mitter

Electronic supplementary material

ESM 1

(PDF 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmourougane, K., Prasanna, R., Singh, S. et al. Modulating rhizosphere colonisation, plant growth, soil nutrient availability and plant defense enzyme activity through Trichoderma viride-Azotobacter chroococcum biofilm inoculation in chickpea. Plant Soil 421, 157–174 (2017). https://doi.org/10.1007/s11104-017-3445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3445-0

Keywords

Navigation