Skip to main content
Log in

Fine root dynamics after soil disturbance evaluated with a root scanner method

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Fine root production in ecosystems has been estimated mainly by excavation methods that cause soil disturbance. In this study, patterns of fine root dynamics following soil disturbance were monitored for multiple years and were analyzed quantitatively by applying a root scanner method that allows continuous observations.

Methods

Eleven scanners were inserted into the soil of cypress and oak forests with soil disturbance, and weekly soil profiles were scanned for several years. Then fine root dynamics were estimated quantitatively by image analyses.

Results

Fine roots emerged intensively in the immediate year of the scanner installation. Seasonal patterns of cumulative root area production followed the logistic curve, but its parameters varied depending on stands and elapsed years after the scanner installation. Estimates of the annual production and instantaneous production rate from the logistic equation differed between the immediate and the following years after disturbance in the cypress and oak stands.

Conclusions

The root scanner method is a viable technique to quantitatively describe fine root dynamics of forests, including the possible effects of soil disturbance. The results suggested that fine root production can be described by a logistic equation providing both an asymptotic upper boundary and a growth coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramoff RZ, Finzi AC (2014) Are above-and below-ground phenology in sync? New Phytol 205:1054–1061. doi:10.1111/nph.13111

    Article  PubMed  Google Scholar 

  • Addo-Danso SD, Prescott CE, Smith AR (2016) Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: a review. For Ecol Manag 359:332–351. doi:10.1016/j.foreco.2015.08.015

    Article  Google Scholar 

  • Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ, Dupuy LX (2014) A scanner system for high-resolution quantification of variation in root growth dynamics of brassica. J Exp Bot 65:2039–2048. doi:10.1093/jxb/eru048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aerts R, Berendse F, Klerk NM, Bakker C (1989) Root production and root turnover in two dominant species of wet heathlands. Oecologia 81:374–378. doi:10.1007/BF00377087

    Article  CAS  PubMed  Google Scholar 

  • Aerts R, Bakker C, De Caluwe H (1992) Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem. Biogeochemistry 15:175–190

    Article  CAS  Google Scholar 

  • Begon M, Colin RT, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell Publishing, Oxford

    Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Springer Science & Business Media, Berlin, Heidelberg, New York

  • Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135–146. doi:10.1007/BF01416099

    Article  CAS  Google Scholar 

  • Dannoura M, Kominami Y, Oguma H, Kanazawa Y (2008) The development of an optical scanner method for observation of plant root dynamics. Plant Roots 2:14–18. doi:10.3117/plantroot.2.14

    Article  Google Scholar 

  • Dannoura M, Kominami Y, Makita N, Oguma H (2012) Flat optical scanner method and root dynamics. In: Mancuso S (ed) Measuring Roots. Springer, Berlin, Heidelberg, pp 127–133

  • Epron D, Osawa A (2017) Fine roots: when anisotropy matters. Tree Physiol 37:693–696. doi:10.1093/treephys/tpx063

    Article  PubMed  Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood Forest ecosystem, Hubbard brook experimental Forest, Nh. J Ecol 82:533–548

    Article  Google Scholar 

  • Fahey TJ, Bledsoe CS, Day FP, Ruess RW, Smucker AJM (1999) Fine root production and demography. Stand soil methods long-term Ecol Res Oxford Univ Press New York 437–455

  • Finér L, Messier C, De Grandpré L (1997) Fine-root dynamics in mixed boreal conifer - broad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–314. doi:10.1139/x96-170

    Article  Google Scholar 

  • Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B (2007) Variation in fine root biomass of three European tree species: beech (Fagus Sylvatica L.), Norway spruce (Picea Abies L. karst.), and scots pine (Pinus Sylvestris L.) Plant Biosyst 141:394–405. doi:10.1080/11263500701625897

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manag 262:2008–2023. doi:10.1016/j.foreco.2011.08.042

    Article  Google Scholar 

  • Forest Soil Division of Forestry and Forest Product Research Institute (1976) Classification of Forest soil in Japan (1975). Bull Gov Forest Exp Sta 280:1–28 (in Japanese)

    Google Scholar 

  • Fukuzawa K, Shibata H, Takagi K, Satoh F, Koike T, Sasa K (2013) Temporal variation in fine-root biomass, production and mortality in a cool temperate forest covered with dense understory vegetation in northern Japan. For Ecol Manag 310:700–710. doi:10.1016/j.foreco.2013.09.015

    Article  Google Scholar 

  • Germon A, Cardinael R, Prieto I, Mao Z, Kim J, Stokes A, Dupraz C, Laclau JP, Jourdan C (2016) Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system. Plant Soil 401:409–426. doi:10.1007/s11104-015-2753-5

    Article  CAS  Google Scholar 

  • Godbold DL, Fritz H-W, Jentschke G, Meesenburg H, Rademacher P (2003) Root turnover and root necromass accumulation of Norway spruce (Picea Abies) are affected by soil acidity. Tree Physiol 23:915–921. doi:10.1093/treephys/23.13.915

    Article  PubMed  Google Scholar 

  • Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecol Monogr 62:43–65

    Article  Google Scholar 

  • Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: resolving the discrepancy in root longevity and turnover estimates between minirhizotron and C isotopic methods. New Phytol 177:443–456. doi:10.1111/j.1469-8137.2007.02242.x

    Article  PubMed  Google Scholar 

  • Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73:1094–1104. doi:10.2307/1940183

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can J For Res 23:2507–2520. doi:10.1139/x93-312

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1996) Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant Soil 185:293–304. doi:10.1007/BF02257535

    Article  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1997) The relationship between fine root demography and the soil environment in northern hardwood forests. Ecoscience 4:99–105. doi:10.1080/11956860.1997.11682383

    Article  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi:10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Hertel D, Strecker T, Müller-Haubold H, Leuschner C (2013) Fine root biomass and dynamics in beech forests across a precipitation gradient - is optimal resource partitioning theory applicable to water-limited mature trees? J Ecol 101:1183–1200. doi:10.1111/1365-2745.12124

    Article  Google Scholar 

  • Hirano Y, Noguchi K, Ohashi M, Hishi T, Makita N, Fujii S, Finér L (2009) A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Roots 3:26–31. doi:10.3117/plantroot.3.26

    Article  Google Scholar 

  • Hishi T, Takeda H (2005) Dynamics of heterorhizic root systems: Protoxylem groups within the fine-root system of Chamaecyparis Obtusa. New Phytol 167:509–521. doi:10.1111/j.1469-8137.2005.01418.x

    Article  PubMed  Google Scholar 

  • Hozumi K (1973) Interaction among plant individuals. Ecology Series 10. Kyoritsu Shuppan, Tokyo (in Japanese)

  • Hozumi K (1985) Phase diagrammatic approach to the analysis of growth curve using theu-w diagram—basic aspects. J Plant Res 98:239–250

    Google Scholar 

  • Hozumi K (1987) Analysis of growth curve of stem volume in some woody species using the u-w diagram. Bot Mag 100:87–97. doi:10.1007/BF02488422

    Article  Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Hew Haven Connecticut, Yale University Press 1978

  • IUSS Working Group (2014) World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps. FAO, Rome

  • Janssens IA, Sampson DA, Curiel-Yuste J, Carrara A, Ceulemans R (2002) The carbon cost of fine root turnover in a scots pine forest. For Ecol Manag 168:231–240. doi:10.1016/S0378-1127(01)00755-1

    Article  Google Scholar 

  • Jentschke G, Drexhage M, Fritz HW, Fritz E, Schella B, Lee DH, Gruber F, Heimann J, Kuhr M, Schmidt J, Schmidt S, Zimmermann R, Godbold DL (2001) Does soil acidity reduce subsoil rooting in norway spruce (picea abies)? Plant Soil 237:91–108. doi:10.1023/A:1013305712465

    Article  CAS  Google Scholar 

  • Jiménez EM, Moreno FH, Lloyd J, Peñuela MC, Patiño S (2009) Fine root dynamics for forests on contrasting soils in the colombian Amazon. Biogeosci Discuss 6:3415–3453. doi:10.5194/bgd-6-3415-2009

    Article  Google Scholar 

  • Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289

    Article  PubMed  Google Scholar 

  • Joslin JD, Wolfe MH (1999) Disturbances during minirhizotron installation can affect root observation data. Soil Sci Soc Am J 63:218–221. doi:10.2136/sssaj1999.03615995006300010031x

    Article  CAS  Google Scholar 

  • Joslin JD, Wolfe MH, Hanson PJ (2001) Factors controlling the timing of root elongation intensity in a mature upland oak stand. Plant Soil 228:201–212. doi:10.1023/A:1004866705021

    Article  Google Scholar 

  • Karizumi N (1979) Illustrations of tree roots. Seibundo Shinkosha Publishing Co. Ltd., Tokyo (in Japanese)

  • Keyes MR, Grier CC (1981) Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605. doi:10.1139/x81-082

    Article  Google Scholar 

  • Laiho R, Bhuiyan R, Straková P, Mäkiranta P, Badorek T, Penttilä T (2014) Modified ingrowth core method plus infrared calibration models for estimating fine root production in peatlands. Plant Soil 385:311–327. doi:10.1007/s11104-014-2225-3

    Article  CAS  Google Scholar 

  • Lauenroth W (2000) Methods of estimating belowground net primary production. In: Sala O, Jackson R, Mooney H, Howarth R (eds) Methods in ecosystem science SE - 5. Springer, New York, pp 58–71

    Chapter  Google Scholar 

  • Li X, Zhu J, Lange H, Han S (2012) A modified ingrowth core method for measuring fine root production, mortality and decomposition in forests. Tree Physiol 33:18–25. doi:10.1093/treephys/tps124

    Article  PubMed  Google Scholar 

  • Liu C, Xiang W, Lei P, Deng X, Tian D, Fang X, Peng C (2014) Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 376:445–459. doi:10.1007/s11104-013-1998-0

    Article  CAS  Google Scholar 

  • López B, Sabaté S, Gracia CA (2001) Annual and seasonal changes in fine root biomass of a Quercus Ilex L. forest. Plant Soil 230:125–134

    Article  Google Scholar 

  • Majdi H (1996) Root sampling methods - applications and limitations of the minirhizotron technique. Plant Soil 185:255–258. doi:10.1007/BF02257530

    Article  CAS  Google Scholar 

  • Majdi H, Öhrvik J (2004) Interactive effects of soil warming and fertilization root production, mortality, and longevity in a Norway spruce stand in northern Sweden. Glob Chang Biol 10:182–188. doi:10.1111/j.1365-2486.2004.00733.x

    Article  Google Scholar 

  • Majdi H, Pregitzer K, Morén AS, Nylund JE, Ågren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8. doi:10.1007/s11104-005-3104-8

    Article  CAS  Google Scholar 

  • Makita N, Kosugi Y, Kawamura M (2014) Linkages between diurnal patterns of root respiration and leaf photosynthesis in Quercus Crispula and Fagus Crenata seedlings. J Agric Meteorol 70:151–162. doi:10.2480/agrmet.D-14-00006

    Article  Google Scholar 

  • Mei L, Gu J, Zhang Z, Wang Z (2010) Responses of fine root mass, length, production and turnover to soil nitrogen fertilization in Larix Gmelinii and Fraxinus Mandshurica forests in northeastern China. J For Res 15:194–201. doi:10.1007/s10310-009-0176-y

    Article  CAS  Google Scholar 

  • Milchunas DG (2009) Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12:1381–1402. doi:10.1007/s10021-009-9295-8

    Article  CAS  Google Scholar 

  • Ministry of Land Infrastructure Transportation and Tourism (1982) Land and real property in Japan. In: 1/50,000 L. Classif. base Surv. Soil map. Kyoto Tohokubu Kyoto Tonanbu (in Japanese)

  • Miyaura T (2009) Forest changes at Seta Hill after the world war II. A 2008 report of the Satoyama regional Symbiosis studies open research center, Ryukoku university (in Japanese)

  • Monserud RA (1984) Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. For Sci 30:943–965

    Google Scholar 

  • Montagnoli A, Terzaghi M, Scippa GS, Chiatante D (2014) Heterorhizy can lead to underestimation of fine-root production when using mesh-based techniques. Acta Oecol 59:84–90

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Article  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390

    Article  Google Scholar 

  • Nakano A, Ikeno H, Kimura T, Sakamoto H, Dannoura M, Hirano Y, Makita N, Finér L, Ohashi M (2012) Automated analysis of fine-root dynamics using a series of digital images. J Plant Nutr Soil Sci 175:775–783. doi:10.1002/jpln.201100316

    Article  CAS  Google Scholar 

  • Neill C (1992) Comparison of soil coring and ingrowth methods for measuring belowground production. Ecology 73:1918–1921

    Article  Google Scholar 

  • Noguchi K, Konôpka B, Satomura T, Kaneko S, Takahashi M (2007) Biomass and production of fine roots in Japanese forests. J For Res 12:83–95. doi:10.1007/s10310-006-0262-3

    Article  Google Scholar 

  • Noguchi K, Han Q, Araki MG, Kawasaki T, Kaneko S, Takahashi M, Chiba Y (2011) Fine-root dynamics in a young hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning. J For Res 16:284–291. doi:10.1007/s10310-010-0221-x

    Article  CAS  Google Scholar 

  • Norby R, Fitter A, Jackson R (2000) Root dynamics and global change: an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Obara H, Maejima Y, Kohyama K, Ohkura T, Takata Y (2015) Outline of the comprehensive soil classification system of Japan–first approximation. Japan Agric Res Q 49:217–226

  • Ohashi M, Nakano A, Hirano Y, Noguchi K, Ikeno H, Fukae R, Yamase K, Makita N, Finér L (2015) Applicability of the net sheet method for estimating fine root production in forest ecosystems. Trees 30:571–578. doi:10.1007/s00468-015-1308-y

    Article  Google Scholar 

  • Maria do Rosário GO, Van Noordwijk M, Gaze SR, Brouwer G, Bona S, Mosca G, Hairiah K (2000) Auger sampling, ingrowth cores and pinboard methods. In: Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (eds) Root methods. Springer, Berlin, Heidelberg, pp 175–210

  • Osawa A, Aizawa R (2012) A new approach to estimate fine root production, mortality, and decomposition using litter bag experiments and soil core techniques. Plant Soil 355:167–181. doi:10.1007/s11104-011-1090-6

    Article  CAS  Google Scholar 

  • Osawa A, Allen RB (1993) Allometric theory theory explains self-thinning relationships of mountain beech and red pine. Ecology 74:1020–1032

    Article  Google Scholar 

  • Ostonen I, Lõhmus K, Pajuste K (2005) Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: comparison of soil core and ingrowth core methods. For Ecol Manag 212:264–277. doi:10.1016/j.foreco.2005.03.064

    Article  Google Scholar 

  • Persson H (1980) Spatial distribution of fine-root growth, mortality and decomposition in a young scots pine stand in Central Sweden. Oikos 34:77–87. doi:10.2307/3544552

    Article  Google Scholar 

  • Pregitzer K, DeForest J, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine north American trees. Ecol Monogr 72:293–309. doi:10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2

    Article  Google Scholar 

  • Price JS, Hendrick RL (1998) Fine root length production, mortality and standing root crop dynamics in an intensively managed sweetgum (Liquidambar styraciflua L.) coppice. Plant Soil 205:193–201. doi:10.1023/A:1004324714371

    Article  CAS  Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Oren R (2008) Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Glob Chang Biol 14:1252–1264

    Article  Google Scholar 

  • R Development Core Team (2016) R: A language and environment for statistical computing (Version 3.3.1). R Foundation for Statistical Computing, Vienna

  • Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354

    Article  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen ME, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662. doi:10.1890/02-4032

    Article  Google Scholar 

  • Shilo T, Rubin B, Ephrath JE, Eizenberg H (2013) Continuous non-destructive monitoring of Cyperus Rotundus development using a minirhizotron. Weed Res 53:164–168. doi:10.1111/wre.12015

    Article  Google Scholar 

  • Shinozaki K, Kira T (1956) Intraspecific competition among higher plants VII. Logistic theory of the C-D effect. J Inst Polytecnics, Osaka City Univ Series D7:35–72

  • Steele SJ, Gower ST, Vogel JG, Norman JM (1997) Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiol 17:577–587

    Article  CAS  PubMed  Google Scholar 

  • Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Chang Biol 16:2241–2251. doi:10.1111/j.1365-2486.2009.02065.x

    Article  Google Scholar 

  • Steingrobe B, Schmid H, Claassen N (2000) The use of the ingrowth core method for measuring root production of arable crops - influence of soil conditions inside the ingrowth core on root growth. J Plant Nutr Soil Sci 163:617–622. doi:10.1002/1522-2624(200012)163:6<617::AID-JPLN617>3.0.CO;2-0

    Article  CAS  Google Scholar 

  • Steingrobe B, Schmid H, Claassen N (2001) The use of the ingrowth core method for measuring root production of arable crops - influence of soil and root disturbance during installation of the bags on root ingrowth into the cores. Eur J Agron 15:143–151. doi:10.1016/S1161-0301(01)00100-9

    Article  Google Scholar 

  • Tateno R, Hishi T, Takeda H (2004) Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. For Ecol Manag 193:297–306. doi:10.1016/j.foreco.2003.11.011

    Article  Google Scholar 

  • Teskey RO, Hinckley TM (1981) Influence of temperature and water potential on root growth of white oak. Physiol Plant 52:363–369. doi:10.1111/j.1399-3054.1981.tb06055.x

    Article  Google Scholar 

  • Tingey DT, Johnson MG, Phillips DL, Johnson DW, Ball JT (1996) Effects of elevated CO2 and nitrogen on the synchrony of shoot and root growth in ponderosa pine. Tree Physiol 16:905–914

    Article  PubMed  Google Scholar 

  • Tryon PR, Chapin FS III (1983) Temperature control over root growth and root biomass in taiga forest trees. Can J For Res 13:827–833. doi:10.1139/x83-112

    Article  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2012) Minirhizotrons in modern root studies. In: Mancuso S (ed) Measuring roots: an updated approach. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  • Van Do T, Sato T, Kozan O (2015) A new approach for estimating fine root production in forests: a combination of ingrowth core and scanner. Trees 30:545–554. doi:10.1007/s00468-015-1195-2

    Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population poursuit dans son accroissement. In: Correspondance mathématique et physique 10. pp 113–121

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. Tech approaches For tree Ecophysiol 477–501

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant soil an Int. J. Plant-Soil Relationships 187:159–219

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. In: Box J Jr (ed) Root demographics and their efficiencies in sustainable agriculture, grasslands and Forest ecosystems SE - 61. Springer, Netherlands, pp 687–720

    Chapter  Google Scholar 

  • Yamato M, Iwase K (2005) Community analysis of arbuscular mycorrhizal fungi in a warm-temperate deciduous broad-leaved forest and introduction of the fungal community into the seedlings of indigenous woody plants. Mycoscience 46:334–342. doi:10.1007/s10267-005-0256-6

    Article  Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Biol Osaka City Univ 14:107–129

Download references

Acknowledgments

We thank T. Miyaura and Satoyama Research Center of Ryukoku University who allowed us the use of Ryukoku Forest for data and sample collection. N. Kurachi is acknowledged for suggesting application of logistic growth analysis to fine root data which proved useful. K. Nakamura helped analyze soil texture of the study site. We also acknowledge M. Dannoura and D. Epron for critical review of this manuscript. Fellow students, including J. An, H. Schäfer, H. Nakamura, K. Hattori, A. Kawamura, M. Ishii, helped various aspects of the study particularly for image acquisition by root scanners or stand measurement. The present study was supported in part by a Grant-in-Aid of Scientific Research no. 16 J10182 from the Japan Society for the Promotion of Science to R. N. (DC1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Nakahata.

Additional information

Responsible Editor: Hans Lambers.

Appendix

Appendix

Fig. 10
figure 10

Schematic diagrams of two types of scanner boxes. For the CCD-type scanner, the scanning surface was covered with a transparent acrylic panel. On the other hand, the scanning surface was exposed without a transparent acrylic panel on the CIS-type scanner. USB cable (and power cable for the CCD-type) protrudes from the scanner box for connection to the laptop computer (and the battery for the CCD-type)

Table 4 Dates of scanner installation (SI), first root emergence (FE), and last scanning (LS) in each root scanner. Duration between dates of scanner installation and last scanning, and between dates of scanner installation and first root emergence were calculated using those dates
Table 5 Estimated values of asymptotic upper limit (A; mm2 cm2), growth coefficient (λ; d−1) and day of the year of the maximum value of inclination (t DOY ; d) by fitting the logistic curve (Eq. 3) for cumulative root area production (Rp) in each scanner and elapsed year from scanner installation. The t DOY was calculated by the following equation: t DOY  = ln k ∙ λ −1, where k is an integration constant of the logistic equation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakahata, R., Osawa, A. Fine root dynamics after soil disturbance evaluated with a root scanner method. Plant Soil 419, 467–487 (2017). https://doi.org/10.1007/s11104-017-3361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3361-3

Keywords

Navigation