Skip to main content
Log in

Allocation trade-off between root and mycorrhizal surface defines nitrogen and phosphorus relations in 13 grassland species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

In oligotrophic ecosystems efficient nutrient uptake mechanisms, like extensive root systems or the association with belowground symbionts (e.g. arbuscular mycorrhizal fungi, AMF), are crucial. Pursuing root- or AMF-dominated foraging may result in diverging success regarding nitrogen (N) and phosphorus (P) nutrition. In this study we identify species- and functional group-specific belowground allocation strategies and disentangle the role of root vs. hyphal allocation for N and P nutrition.

Methods

Allocation patterns to both root and AM hyphal surface together with plant P- and N-relations were measured in non-mycorrhizal and mycorrhizal individuals of 13 common grassland species belonging to the functional groups of forbs, grasses, legumes and non-mycotrophic Brassicaceae.

Results

The trade-off between predominant investments into either roots or hyphae showed high species- and functional group-specificity and clearly defined plant N:P relations, with root strategists gaining larger N- and lower P-benefits than mycorrhizal strategists. Further, P-delivery by AMF was accompanied by strong fungal N-competition.

Conclusions

Our results demonstrate high relevance of the allocation trade-off between root and mycorrhizal surface for N- and P-nutrition in grassland species. Low soil N:P ratios may only allow for positive AMF effects in mycorrhizal strategists, whereas root strategists may experience negative effects, likely being linked to N-limitation in the AM-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhmetzhanova AA, Soudzilovskaia NA, Onipchenko VG, et al. (2012) A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology 93:689–690

    Article  Google Scholar 

  • Allen MF, Allen EB, Friese CF (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111:45–49

    Article  Google Scholar 

  • Ames RN, Reid CPP, Porter L, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labeled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Ashgari HR, Cavagnaro TR (2012) Arbuscular mycorrhizas reduce nitrogen loss via leaching. PLoS One 7:e29825

    Article  Google Scholar 

  • Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of 13 wheat cultivars. New Phytol 87:677–685

    Article  Google Scholar 

  • Bartelheimer M, Steinlein T, Beyschlag W (2006) Aggregative root placement: A feature during interspecific competition in inland sand-dune habitats. Plant Soil 280:101–114

    Article  CAS  Google Scholar 

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33:713–716

    Article  Google Scholar 

  • Brouwer R (1983) Functional equilibrium: sense of nonsense? Neth J Agric Sci 31:335–348

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Chalk P, Souza R, Urquiaga S, Alves B, Boddey R (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    Article  CAS  Google Scholar 

  • Cui M, Caldwell MM (1996) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. II. Hyphae exploiting root-free soil. New Phytol 133:461–467

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, et al. (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. P Natl Acad Sci USA 109:2666–2671

    Article  CAS  Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas - Implications for functioning under natural conditions. Experientia 47:350–355

    Article  Google Scholar 

  • Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 87:615–621

    Article  Google Scholar 

  • George E, Haeussler K-U, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, et al. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Harley JL, Harley EL (1987) A checklist of Mycorrhiza in the British Flora. New Phytol 105:1–102

    Article  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hempel S, Götzenberger L, Kühn I, et al. (2013) Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94:1389–1399

    Article  PubMed  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1992) Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgrass prairie forbs. Can J Bot 70:1521–1528

    Article  Google Scholar 

  • Hoagland DR, Arnon I (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. P Natl Acad Sci USA 107:13754–13759

    Article  CAS  Google Scholar 

  • Hodge A, Storer K (2015) Arbuscular mycorrhizas and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19

    Article  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Höpfner I, Friede M, Unger S, Beyschlag W (2014) Potential advantages of highly mycotrophic foraging for the establishment of early successional pioneer plants on sand. Funct Plant Biol 42:95–104

    Article  Google Scholar 

  • Höpfner I, Beyschlag W, Bartelheimer M, Werner C, Unger S (2015) Role of mycorrhization and nutrient availability in competitive interactions between the grassland species Plantago lanceolata and Hieracium pilosella. Plant Ecol 216:887–899

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, et al. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Li MG (1989) Appropriate controls for vesicular-arbuscular mycorrhiza research. New Phytol 111:35–44

    Article  Google Scholar 

  • Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol 148:163–168

    Article  Google Scholar 

  • Lambers H, Teste FP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ 36:1911–1915

    PubMed  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Le Bagousse-Pinguet Y, Forey E, Touzard B, Michalet R (2013) Disentangling the effects of water and nutrients for studying the outcome of plant interactions in sand dune ecosystems. J Veg Sci 24:375–383

    Article  Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Zhu YG, Marschner P, Smith FA, Smith SE (2005) Wheat responses to arbuscular mycorrhizal fungi in a highly calcareous soil differ from those of clover, and change with plant development and P supply. Plant Soil 277:221–232

    Article  CAS  Google Scholar 

  • McGonigle T, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Merrild MP, Ambus P, Rosendahl S, Jakobsen I (2013) Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytol 200:229–240

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Orlowska E, Zubek S, Jurkiewicz A, Szarek-Łukaszewska G, Turnau K (2002) Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. 1. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Regvar M, Vogel K, Irgel N, et al. (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    Article  CAS  PubMed  Google Scholar 

  • Reinhart KO, Wilson GW, Rinella MJ (2012) Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol Lett 15:689–695

    Article  PubMed  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Saia S, Amato G, Frenda AS, Giambalvo D, Ruisi P (2014) Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of Berseem clover plants subjected to water stress. PLoS One 9:e90738

    Article  PubMed  PubMed Central  Google Scholar 

  • Schweiger P, Robson A, Barrow N (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–254

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, Ed. 3 edn. Academic Press, London

    Google Scholar 

  • Smith FA, Smith SE (2011a) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011b) Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus (P) nutrition: interactions between pathways of P uptake in Arbuscular mycorrhizal (AM) roots have important implications for understanding and manipulating P acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Titus JH, del Moral R (1998) Vesicular-arbuscular mycorrhizae influence Mount St. Helens pioneer species in greenhouse experiments. Oikos 81:495–510

    Article  Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Veiga RS, Faccio A, Genre A, Pieterse CM, Bonfante P, Heijden MG (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36:1926–1937

    PubMed  Google Scholar 

  • Wang B, Qiu Y (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yeun LH, Xue J-Y, Liu Y, Ane J-M, Qiu Y-L (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525

    Article  PubMed  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils. Soil Sci Soc Am Proc 29:677–678

    Article  CAS  Google Scholar 

  • Weigelt A, Steinlein T, Beyschlag W (2005) Competition among three dune species: the impact of water availability on below-ground processes. Plant Ecol 176:57–68

    Article  Google Scholar 

  • Whiteside MD, Digman MA, Gratton E, Treseder KK (2012) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem 55:7–13

    Article  CAS  Google Scholar 

  • Wilson JB (1988) A review of evidence on the control of shoot-root ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Elke Furlkröger, Christine Schlüter and Barbara Teichner for technical support with plant cultivation and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Unger.

Additional information

Responsible Editor: Duncan D. Cameron.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unger, S., Friede, M., Hundacker, J. et al. Allocation trade-off between root and mycorrhizal surface defines nitrogen and phosphorus relations in 13 grassland species. Plant Soil 407, 279–292 (2016). https://doi.org/10.1007/s11104-016-2994-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2994-y

Keywords

Navigation