Skip to main content

Advertisement

Log in

The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The mechanism for silicon-mediated salt tolerance is still not very clear. The aim of this study was to investigate the possible role of silicon in regulating carbohydrate metabolism in cucumber (Cucumis sativus L.).

Methods

Two cucumber cultivars (‘JinYou 1’ and ‘JinChun 5’) grown hydroponically were subjected to 75 mM NaCl stress in the absence or presence of added silicon (0.3 mM). Plant growth, oxidative damage, chlorophyll fluorescence and carbohydrate metabolism were investigated.

Results

Added silicon improved plant growth and photosynthetic performance, while alleviated oxidative damage of cucumber under salt stress. Salt stress increased the soluble sugar levels in both leaves and roots. Starch was accumulated in the leaves but decreased in the roots under salt stress. Added silicon decreased the soluble sugar levels in leaves through regulating the activities of carbohydrate metabolism enzymes. The starch content was decreased in leaves but increased in roots by added silicon under stress. Silicon addition increased the root sucrose content in ‘JinYou 1’ but decreased it in ‘JinChun 5’ under salt stress.

Conclusions

Silicon-mediated decrease of assimilate accumulation in leaves may alleviate photosynthetic feedback repression, while silicon-enhanced assimilate transport provides more energy storage in the roots, which is beneficial for salt stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alaoui-Sossé B, Genet P, Vinit-Dunand F, Toussaint M, Epron D, Badot P (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218

    Article  Google Scholar 

  • Ashraf M, Rahmatullah AM, Ahmad R, Mujeeb F, Sarwar A, Ali L (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Balibrea ME, Dell’Amico J, Bolarín MC, Pérez-Alfocea F (2000) Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiol Plant 110:503–511

    Article  CAS  Google Scholar 

  • Balibrea ME, Santa Cruz AM, Bolarín MC, Pérez-Alfocea F (1996) Sucrolytic activities in relation to sink strength and carbohydrate composition in tomato fruit growing under salinity. Plant Sci 118:47–55

    Article  CAS  Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2004) ADP-Glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynth Res 79:1–24

    Article  CAS  PubMed  Google Scholar 

  • Basu PS, Ali M, Chaturvedi SK (2007) Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought. Indian J Exp Biol 45:261–267

    CAS  PubMed  Google Scholar 

  • Bhatia S, Asthir B (2014) Calcium mitigates heat stress effect in wheat seeding growth by altering carbohydrate metabolism. Indian J Plant Physiol 19:138–143

    Article  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cardemil L, Varner JE (1985) Starch degradation metabolism towards sucrose synthesis in germinating Araucaria araucana seeds. Plant Physiol 76:1047–1054

    Article  Google Scholar 

  • Chen D, Yin L, Deng X, Wang S (2014) Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Physiol Plant 36:2531–2535

    Article  CAS  Google Scholar 

  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Choudhury B, Mitra S, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate. Physiol Mol Biol Plants 16:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta R, Selvi MT, Seetharama N, Sharma R (1999) Stress-mediated enhancement of β-amylase activity in pearl millet and maize leaves is dependent on light. J Plant Physiol 154:657–664

    Article  CAS  Google Scholar 

  • Detmann KC, Araujo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues FA, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752–762

    Article  CAS  PubMed  Google Scholar 

  • Diogo RVC, Wydra K (2007) Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol Mol Plant 70:120–129

    Article  CAS  Google Scholar 

  • Dong C, Wang X, Shang Q (2011) Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Sci Hortic 129:629–636

    Article  CAS  Google Scholar 

  • Duffus C, Rosie R (1973) Starch hydrolysing enzymes in developing barley grain. Planta 109:153–160

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili S, Salehi H, Eshghi S (2015) Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. J Plant Nutr 38:1885–1901

    Article  CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    Article  CAS  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189:329–339

    Article  CAS  PubMed  Google Scholar 

  • Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89

    Article  CAS  Google Scholar 

  • Gil R, Boscaiu M, Lull C, Bautista I, Lid NA, Vicente O (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 40:805–808

    CAS  Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24–35

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S (2007) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact 2:105–113

    Article  CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier J (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  • Gurmani AR, Bano A, Ullah N, Khan H, Jahangir M, Flowers TJ (2013) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Aust J Crop Sci 7:1219–1226

    Google Scholar 

  • Han S, Chen L, Jiang H, Smith BR, Yang L, Xie C (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, Berkeley, 347

  • Hu L, Xiang L, Zhang L, Zhou X, Zou Z, Hu X (2014) The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress. PLoS One 9:110855–110855

    Article  Google Scholar 

  • Huang Y, Bie ZL, Liu ZX, Zhen A, Wang WJ (2009) Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci Plant Nutr 55:698–704

    Article  CAS  Google Scholar 

  • Hubbard NL, Huber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Ann Rev Plant Physiol Mol Bio 47:431–444

    Article  CAS  Google Scholar 

  • Hütsch BW, Jung S, Schubert S (2015) Comparison of salt and drought - stress effects on maize growth and yield formation with regard to acid invertase activity in the kernels. J Agron Crop Sci 201:353–367

    Article  Google Scholar 

  • Isa M, Bai S, Yokoyama T, Ma JF, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2010) Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant Soil 331:361–375

    Article  CAS  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Engin App Sci 2:7–10

    CAS  Google Scholar 

  • Khelil A, Menu T, Ricard B (2007) Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiol Biochem 45:551–559

    Article  CAS  PubMed  Google Scholar 

  • Kingston-Smith AH, Walker RP, Pollock CJ (1999) Invertase in leaves: conundrum or control point? J Exp Bot 50:735–743

    CAS  Google Scholar 

  • Li H, Zhu Y, Hu Y, Han W, Gong H (2015a) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant. doi:10.1007/s11738-015-1818-7

    Google Scholar 

  • Li T, Heuvelink E, Marcelis LFM (2015b) Quantifying the source-sink balance and carbohydrate content in three tomato cultivars. Front Plant Sci 6:416

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Jing W, Peng Y, Zhang XQ, Ma X, Huang LK, Yan Y (2015c) Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. PLoS One 10:e0120708

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang YC (1998) Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 8:289–296

    Google Scholar 

  • Liang Y, Sun W, Zhu Y, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14–26

    Article  CAS  Google Scholar 

  • Miron D, Schaffer AA (1991) Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol 95:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Muller-Rober BT, Kossmann J, Hannah LC, Willmitzer L, Sonnewald U (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet 224:136–146

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Pelleschi S, Rocher JP, Prioul JL (1997) Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ 20:493–503

    Article  CAS  Google Scholar 

  • Ranwala AP, Miller WB (1998) Sucrose-cleaving enzymes and carbohydrate pools in Lilium longiflorum floral organs. Physiol Plant 103:541–550

    Article  CAS  Google Scholar 

  • Richter JA, Erban A, Kopka J, Zörb C (2015) Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Sci 233:107–115

    Article  CAS  PubMed  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB (1994) Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J 13:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut R 22:1–16

    Article  Google Scholar 

  • Rohanipoor A, Norouzi M, Moezzi A, Hassibi P (2013) Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. J Biol Environ Sci 7:71–79

    Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Hilal M, González JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose–starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307

    Article  CAS  PubMed  Google Scholar 

  • Rosales MA, Rubio-Wilhelmi MM, Castellano R, Castilla N, Ruiz JM, Romero L (2007) Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Sci Hortic 113:244–249

    Article  Google Scholar 

  • Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savvas D, Giotis D, Chatzieustratiou E, Bakea M, Patakioutas G (2009) Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environ Exp Bot 65:11–17

    Article  CAS  Google Scholar 

  • Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170:847–853

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27–36

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Yuan L, Guo S, Sun J, Yuan Y (2013) Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    Article  CAS  PubMed  Google Scholar 

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2011) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34:71–82

    Article  CAS  Google Scholar 

  • Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123:240–246

    Article  CAS  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    Article  CAS  Google Scholar 

  • Tetlow IJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Matsushima H, Morohashi Y (2000) Water stress enhances beta-amylase activity in cucumber cotyledons. J Exp Bot 51:739–745

    Article  CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    Article  CAS  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259–265

    Article  CAS  PubMed  Google Scholar 

  • Vaculík M, Pavlovič A, Lux A (2015) Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicol Environ Saf 120:66–73

    Article  PubMed  Google Scholar 

  • Vinit-Dunand F, Epron D, Alaoui-Sossé B, Badot P (2002) Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci 163:53–58

    Article  CAS  Google Scholar 

  • Vu JCV, Niedz RP, Yelenosky G (1993) Glycerol stimulation of chlorophyll synthesis, embryogenesis, and carboxylation and sucrose metabolism enzymes in nucellar callus of ‘Hamlin’ sweet orange. Plant Cell Tiss Org 33:75–80

    Article  CAS  Google Scholar 

  • Wang B, Ma M, Lu H, Meng Q, Li G, Yang X (2015b) Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynth Res 126:363–373

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu P, Chen D, Yin L, Li H, Deng X (2015a) Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci 6:759

    PubMed  PubMed Central  Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35:253–289

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Guo J, Hu Y, Gong H (2015) Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front Plant Sci 6:453

    PubMed  PubMed Central  Google Scholar 

  • Xu CX, Ma YP, Liu YL (2015) Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. S Afr J Bot 98:26–36

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q (2001) Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot 52:2169–2179

    CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245–258

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhong M, Shu S, Du N, He L, Yuan L, Sun J, Guo S (2015) Effects of exogenous putrescine on leaf anatomy and carbohydrate metabolism in cucumber (Cucumis sativus L.) under salt stress. J Plant Growth Regul 34:451–464

    Article  CAS  Google Scholar 

  • Zhang JY, Wu FZ (2009) Effects of salt stress on chlorophyll content and chloroplast ultrastructure of different salt-tolerant cucumber varieties. China Vegetables 10:13–16 (in Chinese with English abstract)

    Google Scholar 

  • Zhang RH, Li J, Guo SR, Tezuka T (2009) Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth Res 100:155–162

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Tian S (2006) Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chem 96:519–523

    Article  CAS  Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    Article  CAS  Google Scholar 

  • Zhu Y, Xu X, Hu Y, Han W, Yin J, Li H, Gong H (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep 34:1629–1646

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JP (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31471866, 31272152, 31501751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Gong.

Additional information

Responsible Editor: Jian Feng Ma.

Y. Zhu and J. Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Guo, J., Feng, R. et al. The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant Soil 406, 231–249 (2016). https://doi.org/10.1007/s11104-016-2877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2877-2

Keywords

Navigation