Skip to main content

Advertisement

Log in

Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosynthetic oxygen evolution rate, Hill reaction activity of seedlings and photosynthetic parameter, Pn–Ci curve and some source-sink metabolism-related enzyme activities, and substance content of flag leaves were measured by using two wheat near isogenic lines with significant differences in the photosynthetic rate of the 154 (high photosynthetic rate) and 212 (low photosynthetic rate) lines as materials. The results showed that the maximal carboxylation efficiency (Vcmax) and Hill reaction activity were higher in line 154 than that of line 212. The Pn in flag leaves of line 154 was significantly higher than that of line 212 during the anthesis to grain-filling stage. Higher leaf sucrose phosphate synthase activity, grain sucrose synthase activity, and grain ADPG pyrophosphorylase activity ensured that the photosynthate of line 154 could be transported to grains and translated into starch in a timely and effective manner, which also contributed to the maintenance of its high photosynthetic rate. Eventually, all of these factors of line 154 resulted in its higher grain yield compared with the low photosynthetic rate of line 212.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGPase:

Adenosine diphosphate glucose pyrophosphorylase

Ci:

Intercellular CO2 concentration

Gs:

Stomatal conductance

Ls:

Stomatal limitation value

NILs:

Near isogenic lines

Pn:

Net photosynthetic rate

SPS:

Sucrose phosphate synthase

SS:

Sucrose synthase

Vcmax:

Maximal carboxylation efficiency

References

  • Araus JL, Ferrio JP, Buxo R, Voltas J (2007) The historical perspective of dryland agriculture: lessons learned from 10,000 years of wheat cultivation. J Exp Bot 58:131–145

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 7:377–412

    Article  Google Scholar 

  • Awika JM (2011) Major cereal grains production and use around the world. In advances in cereal science: implications to food processing and health promotion., ACS symposium seriesAmerican Chemical Society, Washington DC, pp 1–13

    Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynth Res 79:1–24

    Article  CAS  PubMed  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Pozueta-Romero J (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50:1651–1662

    Article  PubMed  Google Scholar 

  • Bhullar SS, Jenner CF (1985) Differential responses to high temperatures of starch and nitrogen accumulation in the grain of four cultivars of wheat. Funct Plant Biol 12:363–375

    Google Scholar 

  • Blum A (1990) Variation among wheat cultivars in the response of leaf gas exchange to light. J Agric Sci 115:305–311

    Article  Google Scholar 

  • Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulations in wheat, maize and soy-bean: a quantitative reappraisal. Field Crops Res 86:131–146

    Article  Google Scholar 

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. Climate change and crop production. CABI Publishers, Wallingford, pp 115–138

    Google Scholar 

  • Champigny ML (1995) Integration of photosynthetic carbon and nitrogen metabolism in higher plants. Photosynth Res 46:117–127

    Article  CAS  PubMed  Google Scholar 

  • Cheng JF, Ma WM, Chen GY, Hu MJ, Shen YG, Li ZS, Dong YP, Li B, Li HW (2009) Dynamic changes of photosynthetic characteristics in Xiaoyan 54, Jing 411, and the stable selected superior strains of their hybrid progenies. Acta Agronomica Sinica 35:1051–1058

    Article  CAS  Google Scholar 

  • Conway G, Toenniessen G (1999) Feeding the world in the twenty-first century. Nature 402:C55–C58

    Article  CAS  PubMed  Google Scholar 

  • Dale EMD, Housley TL (1986) Sucrose synthase activity in developing wheat endosperms differing in maximum weight. Plant Physiol 82:7–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delmer DP, Haigler CH (2002) The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab Eng 4:22–28

    Article  CAS  PubMed  Google Scholar 

  • Dixon JM (2009) Wheat facts and futures 2009. CIMMYT, Mexico City

    Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eli Zamski, Schaffer AA (1996) Photoassimilate distribution in plants and crops: source-sink relationships. Marcel Dekker, New York

    Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, New York

    Google Scholar 

  • Evans LT (1997) Adapting and improving crops: the endless task. Philosophical transactions of the Royal Society of London. Ser B: Biol Sci 352:901–906

    Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162:1780–1793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345  

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:S85–S98

    Article  Google Scholar 

  • Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang JP, Parry MAJ (2013) Prospects of doubling global wheat yields. Food Energy Secur 2:34–48

    Article  Google Scholar 

  • He ZH, Xia XC, Chen XM, Zhuang QS (2011) Progress of wheat breeding in china and the future perspective. Acta Agronomica Sinica 37:202–215

    Article  Google Scholar 

  • Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Ann Rev Plant Biol 47:431–444

    Article  CAS  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • Jiang D, Yu ZW, Li YG, Yu SL (2002a) Dynamic changes of enzyme activities involving in starch synthesis in superior and inferior grains of high-yield winter wheat. Scientia Agricultura Sinica 35:378–383

    CAS  Google Scholar 

  • Jiang D, Yu ZW, Li YG, Yu SL (2002b) Effects of different nitrogen application levels on changes of sucrose content in leaf, culm, grain and photosynthate distribution and grain starch accumulation of winter wheat. Scientia Agricultura Sinica 35:157–162

    CAS  Google Scholar 

  • Jiang H, Wang HW, Su JH, Shi XB, Shen YG, Li ZS, Wei QK, Li B, Li M, Zhang JJ (2002c) Photosynthesis in offspring of hybridization between two wheat cultivars. Acta Agronomica Sinica 28:451–454

    Google Scholar 

  • Keeling PL, Wood JR, Tyson RH, Bridges IG (1988) Starch biosynthesis in developing wheat grain. Plant Physiol 87:311–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khush G (2003) Productivity improvements in rice. Nutr Rev 61:S114–S116

    Article  PubMed  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Ann Rev Plant Biol 55:341–372

    Article  CAS  Google Scholar 

  • Lbraheem O, Hove RM, Bradley G (2008) Sucrose assimilation and the role of sucrose transporters in plant wound response. Afr J Biotechnol 7:4850–4855

    Google Scholar 

  • Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465:246–262

    Article  CAS  Google Scholar 

  • Li X, Wang C (2013) Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage. Acta Physiologiae Plantarum 35:1503–1512

    Article  CAS  Google Scholar 

  • Li YG, Yu ZW, Jiang D, Yu SL (2001) Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat. Acta Agronomica Sinica 27:658–664

    Google Scholar 

  • Li N, Zhang S, Zhao Y, Li B, Zhang J (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233:241–250

    Article  CAS  PubMed  Google Scholar 

  • Liu HQ, Jiang GM, Zhang QD, Sun JZ (2002) Changes of gas exchanges in leaves of different cultivars of winter wheat released in different years. Acta Botanica Sinica 44:913–919

    CAS  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improved photosynthesis increase crop yields? Plant, Cell Environ 29:315–330

    Article  CAS  Google Scholar 

  • Lu HQ, Shen FF, Liu LX, Su WF (2005) Recent advances in study on plant sucrose synthase. Chin Agric Sci Bull 21:34–37

    Google Scholar 

  • Ludewig F, Flügge UI (2013) Role of metabolite transporters in source-sink carbon allocation. Front Plant Sci 4:231

    Article  PubMed Central  PubMed  Google Scholar 

  • Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat: how could it be reduced? J Agric Sci, Cambridge 145:139–150

    Article  Google Scholar 

  • Moll RH, Jackson WA, Mikkelsen RL (1994) Recurrent selection for maize grain yield: dry matter and nitrogen accumulation and partitioning changes. Crop Sci 34:874–881

    Article  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 18:532–552

    Article  Google Scholar 

  • Nakamura Yasunori, Yuki Kazuhiro, Park Shin-Young, Ohya Toshihide (1989) Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol 30:833–839

    CAS  Google Scholar 

  • Okita TW (1992) Is there an alternative pathway for starch synthesis? Plant Physiol 100:560–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan QM, Yu ZW, Wang YF, Yu SL (2002) Effects of nitrogen applying stage on both sucrose synthesis in flag leaves and cleavage in grains of wheat. Scientia Agricultura Sinica 35:771–776

    CAS  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu XG, Furbank RT (2010) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    Article  PubMed  Google Scholar 

  • Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547

    Article  CAS  PubMed  Google Scholar 

  • Preiss J, Sivak M (1996) Starch synthesis in sinks and sources. In: Photoassimilate Distribution in Plants and Crops, E Zamski (ed), Source-Sink Relationships, Marcel Dekker, New York, NY, USA, pp 139–168

  • Preiss J, Ball K, Smith-White B (1988) Biosynthesis of starch and its regulation. Biochem Plants 14:181–254

    Article  CAS  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manes Y, Mather DE, Parry MAJ (2011) Raising yield potential of wheat I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–453

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant, Cell Environ 35:1799–1823

    Article  Google Scholar 

  • Rosegrant MW, Agcaoili M (2010) Global food demand, supply, and price prospects to 2010. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15:144–147

    Article  CAS  PubMed  Google Scholar 

  • Sakulsingharoj C, Choi SB, Hwang SK, Edwards GE, Bork J, Meyer CR, Okita TW (2004) Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Sci 167:1323–1333

    Article  CAS  Google Scholar 

  • Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheats in northwest Mexico. Crop Sci 37:36–42

    Article  Google Scholar 

  • Schaffer AA, Petreikov M (1997) Sucrose-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol 113:739–746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  • Sheehy JE, Ferrer AB, Mitchell PL, Elmido-Mabilangan A, Pablico P, Dionora MJA (2007) How the rice crop works and why it needs a new engine. In: Sheehy JE, Mitchell PL, Hardy B (eds) Charting new pathways to C4 rice. International Rice Research Institute, Los Baños, pp 3–26

    Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR, Purcell LC, Sneller CH (2004) Crop transformation and the challenge to increase yield potential. Trends Plant Sci 9:70–75

    Article  CAS  PubMed  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Nat Acad Sci 99:1724–1729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smidansky ED, Martin JM, Hannah CL, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664

    CAS  PubMed  Google Scholar 

  • Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225:965–976

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1989) Control analysis of photosynthetic sucrose synthesis: assignment of elasticity coefficients and flux-control coefficients to the cytosolic fructose-1, 6-bisphosphatase and sucrose phosphate synthase. Philos Trans Royal Society of London B: Biol Sci 323:327–338

    Article  CAS  Google Scholar 

  • Thévenot C, Simond-Côte E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Prioul JL (2005) QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J Exp Bot 56:945–958

    Article  PubMed  Google Scholar 

  • Tuncel A, Okita TW (2013) Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci 211:52–60

    Article  CAS  PubMed  Google Scholar 

  • Turgeon R (1989) The sink-source transition in leaves. Ann Rev Plant Physiol Plant Mol Biol 40:119–138

    Article  Google Scholar 

  • Van Camp W (2005) Yield enhancement genes: seeds for growth. Curr Opin Biotechnol 16:147–153

    Article  PubMed  Google Scholar 

  • Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wang ZL, He MR (1999) Effects of source sink manipulation on production and distribution of photosynthate after flowering in irrigated and rainfed wheat. Acta Agronomica Sinica 25:162–168

    Google Scholar 

  • Wang F, Sanz A, Brenner ML, Smith AG (1993) Sucrose synthease, starch accumulation, and tomato fruit sink strength. Plant Physiol 101:321–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang AY, Kao MH, Yang WH, Sayion Yiyang, Liu LF, Lee PD, Su JC (1999) Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiol 40:800–807

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cui N, Zhang KY, Fan HY, Li TL (2013) Research Advance of Sucrose Phosphate Synthase (SPS) in Higher Plant. Intern J Agric Biol 15:1221–1226

    CAS  Google Scholar 

  • Winder TL, Sun J, Okita TW, Edwards GE (1998) Evidence for the occurrence of feedback inhibition of photosynthesis in rice. Plant Cell Physiol 39:813–820

    Article  CAS  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Article  CAS  Google Scholar 

  • Worrell AC, Bruneau JM, Summerfelt K, Boersig M, Voelker TA (1991) Expression of a maize sucrose phosphate synthase in tomato alters leaf carbonhydrate partitioning. Plant Cell 3:1121–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong FS, Gao YZ, Zhan YC (1994) Relationship between leaf sucrose and starch content and their degradative enzymes activities in crop plants. Acta Agronomica Sinica 20:52–58

    Google Scholar 

  • Xu DQ (1999) Photosynthetic rate, photosynthetic efficiency and crop yield. Bull Biol 34:8–10

    Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang XH, Chen XY, Ge QY, Li B, Tong YP, Zhang AM, Li ZS, Kuang TY, Lu CM (2006) Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci 171:389–397

    Article  CAS  PubMed  Google Scholar 

  • Yang XH, Chen XY, Ge QY, Li B, Tong YP, Zhang AM, Li ZS, Kuang TY, Lu CM (2007) Characterization of photosynthesis of flag leaves in wheat hybrid and its parents grown under field conditions. J Plant Physiol 164:318–326

    Article  CAS  PubMed  Google Scholar 

  • Ye JY, Qian YQ (1985) Detection of Hill reaction with spectrophotometer. In: Xue YL, Xia ZA (eds) Plant physiology experiment handbook. Shanghai Science and Technology Press, Shanghai, pp 104–107

    Google Scholar 

  • Zhang QD, Jiang GM, Zhu XG, Wang Q, Lu CM, Bai KZ, Kuang TY (2001) Photosynthetic capability of 12 genotypes of Triticum aestivum. Acta Phytoecologica Sinica 25:532–536

    Google Scholar 

  • Zhao XX, Ma QQ, Liang C, Fang Y, Wang YQ, Wang W (2007) Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress. Biol Plant 51:584–588

    Article  CAS  Google Scholar 

  • Zheng TC, Zhang XK, Yin GH, Wang LN, Han YL, Chen L, He ZH (2011) Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Res 122:225–233

    Article  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Ann Rev Plant Biol 61:235–261

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang XH, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7:97–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (31271634), the National High Technology Research and Development Program of China (2012AA10A309), and the State Key Basic Research and Development Plan of China (2015CB150105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ma, M., Lu, H. et al. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynth Res 126, 363–373 (2015). https://doi.org/10.1007/s11120-015-0126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0126-9

Keywords

Navigation