Skip to main content
Log in

Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

There is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization.

Methods

We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three root orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization.

Results

Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species.

Conclusions

Not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in belowground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, New York, pp 373–389

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Brakefield PM (2006) Evo-devo and constraints on selection. Trends Ecol Evol 21:362–368

    Article  PubMed  Google Scholar 

  • Brundrett M (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett M, Murase G, Kendrick B (1990) Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot 68:551–578

    Article  Google Scholar 

  • Chen W, Zheg H, Eissenstat DM, Guo D (2013) Variations of first-order root traits across climatic gradients and evolutionary trend in geological time. Glob Ecol Biogeogr 22:846–856

    Article  Google Scholar 

  • Comas LH, Einssestat DM (2009) Patterns in root trait variation among 25 co-existing North American forest species. New Phytol 182:919–928

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012) Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int J Plant Sci 173:584–595

    Article  Google Scholar 

  • Comas LH, Callahan HS, Midford PE (2014) Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecol Evol 4:2979–2990

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proc Natl Acad Sci U S A 101:1904–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desdevises Y, Legendre P, Azouzi L, Morand S (2003) Quantifying phylogenetically structured environmental variation. Evolution 57:2647–2652

  • Duhoux E, Rinaudo G, Diem HG, Aguy F, Fernanda D, Bogusz D, Franche C, Dommergues Y, Huguenin B (2001) Angiosperm Gymnostoma trees produce root nodules colonized by arbuscular mycorrhizal fungi related to Glomus. New Phytol 149:115–125

    Article  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:2–60

    Google Scholar 

  • Eissenstat DM, Kurshaski JM, Zadworny M, Adams TS, Koide RT (2015) Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol. doi:10.1111/nph.13451

    Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manag 261:265–277

    Article  Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243

    Article  Google Scholar 

  • Frankino WA, Zwaan BJ, Stern DL, Brakefield PM (2005) Natural selection and developmental constraints in the evolution of allometries. Science 307:718–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastauer M, Alves JA (2013) Avoiding inaccuracies in tree calibration and phylogenetic community analysis using phylocom 4.2. Ecol Inform 15:85–90

    Article  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Cook A, Richter D (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429

    Article  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011) Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr 81:89–102

    Article  Google Scholar 

  • Gu J, Xu Y, Dong X, Wang H, Wang Z. (2014) Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology tpu019

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine plantation. Oecologia 140:450–457

    Article  PubMed  Google Scholar 

  • Guo DL, Xia M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Hempel S, Götzenberger L, Kühn I, Michalski SG, Rillig MC, Zobel M, Moora M (2013) Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94:1389–1399

    Article  PubMed  Google Scholar 

  • Hishi T (2007) Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. J For Res 12:126–133

    Article  Google Scholar 

  • Ives AR, Midford PE, Garland T Jr (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56:252–270

    Article  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine roots biomass, surface area and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Wilson GTW, Bowker MA, Wilson J, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci U S A 107:2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Dray S (2008) adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26:1907–1909

    Article  Google Scholar 

  • Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D (2014) Leading dimensions in absorptive root trait variation across 96 subtropical species. New Phytol 203:863–872

    Article  PubMed  Google Scholar 

  • Kumar P, Hallgreen SW, Enstone DE, Peterson CA (2007) Root anatomy of Pinus taeda L. seasonal and environmental effects on development in seedlings. Tree-Struc Funct 21:693–706

    Article  Google Scholar 

  • Lin C, Yang Y, Guo J, Chen G, Xie J (2011) Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant Soil 338:311–327

    Article  CAS  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–2109

    Article  Google Scholar 

  • Lumini E, Origazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungi biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Maherali H (2014) Is there an association between root architecture and mycorrhizal growth response? New Phytol 204:191–199

    Article  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EA, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 155:495–501

    Article  Google Scholar 

  • Newshan EI, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhiza. Trends Ecol Evol 10:407–411

    Article  Google Scholar 

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press, Chicago, 395 p

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2008) Vegan: community ecology package. R package version 1.15

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

  • Paradis E (2012) Analysis of phylogenetics and evolution with R, 2nd edn. Springer, New York

  • Peres-Neto PR, Legendre P, Dray S, Borcard D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

  • Pinheiro, J, Douglas, B, Saikat, DR, Deepayan S (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-111

  • Pregitzer KS (2002) Fine roots of trees: a new perspective. New Phytol 154:267–273

    Article  Google Scholar 

  • Pregitzer KS, DeForest JD, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Poot P, Lambers H (2003) Are trade-offs in allocation pattern and root morphology related to species abundance? A congeneric comparison between rare and common species in the south‐western Australian flora. J Ecol 91:58–67

  • Raich JW, Russell AE, Valverde-Barrantes OJ (2009) Fine root decay rates vary widely among lowland tropical tree species. Oecologia 161:325–330

    Article  PubMed  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Roumet C, Lafont F, Sari M, Warenbourg F, Garnier E (2008) Root traits and taxonomic affiliation of nine herbaceous species in glasshouse conditions. Plant Soil 312:69–83

    Article  CAS  Google Scholar 

  • Ryser P (2006) The mysterious root length. Plant Soil 286:1–6

    Article  CAS  Google Scholar 

  • Seago JL, Fernando DD (2013) Anatomical aspects of angiosperm root evolution. Ann Bot 112:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selosse MA, Rousset F (2011) The plant-fungal marketplace. Science 333:828–829

    Article  CAS  PubMed  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparison of climate and litter quality effects. Oecologia 129:407–419

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. USA Academic Press, New York

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbiosis as they relate to nutrient transfer. New Phytol 114:1–38

    Article  CAS  Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459

    Article  PubMed  Google Scholar 

  • Treseder KK (2014) A meta-analysis of mycorrhizal responses to nitrogen, phosphorous and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and a field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Valverde-Barrantes OJ, Raich JW, Russell AE (2007) Fine-root mass, growth and nitrogen content for six tropical tree species. Plant Soil 290:357–370

    Article  CAS  Google Scholar 

  • Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2013) The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. J Ecol 101:933–942

    Article  Google Scholar 

  • Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015) Fine root morphology is phylogenetically structured but nitrogen is related to the plant economics spectrum in temperate trees. Funct Ecol 29:796–807

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Abjorsen H (1996) Review of root dynamics in forest ecosystems grouped by climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Wang B, Qiu L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183

    Article  Google Scholar 

  • Webb CO, Ackerley DD, Kembel S (2011) Software for the analysis of phylogenetic community structure and character evolution (with Phylomatic and Ecovolve). User’s Manual. http://phylodiversity.net/phylocom/

  • White PJ, George TJ, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013) Matching root to their environment. Ann Bot 112:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparison of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397

    Article  Google Scholar 

  • Xia MX, Guo DL, Pregitzer KS (2010) Ephemeral root modules in Fraxinus mandshurica. New Phytol 188:1065–1074

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Scott Kelsey, Suhana Chattopadhyay, Eugene Ryee, Kristine Nissell, Benjamin Villareal, Haren Bonepudi, Josh Lucas, Mariana Romero, Jean Carlo Valverde, Mike Fulp and Carlynn Fulp for their assistance in the field and processing samples. Special thanks to Ethan Johnson from The Holden Arboretum and Kristopher Stone and Josh Selm from Boone County Arboretum for their advice in selecting tree individuals, and to Charlotte Hewins from The Holden Arboretum for sample processing help. This study was funded by startup funds provided by Kent State University, an Art and Margaret Herrick Research Grant, a David and Susan Jarzen Scholarship, The Holden Arboretum Trust, and The Corning Institute for Education and Research, and research grants from US National Science Foundation (DEB-0918240, DEB-0918878) and Department of Energy (DE-SC000433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar J. Valverde-Barrantes.

Additional information

Responsible Editor: Duncan D. Cameron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valverde-Barrantes, O.J., Horning, A.L., Smemo, K.A. et al. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil 404, 1–12 (2016). https://doi.org/10.1007/s11104-016-2820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2820-6

Keywords

Navigation