Skip to main content
Log in

Nitrogen and photorespiration pathways, salt stress genotypic tolerance effects in tomato plants (Solanum lycopersicum L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nitrogen is necessary to synthesize compounds such as chlorophyll, amino acids, nucleic acids, proteins, lipids, and other nitrogen (N) metabolites. In this sense, saline stress produces a decrement in the quality and quantity of crop production around the world due to an osmotic and ionic imbalance that alters the N metabolism. The objective of this work is to verify if the genotypic variability and a better nitrogen metabolism regulation improve tolerance to saline stress in tomato plants. This study was conducted with (Grand Brix and Marmande RAF) two tomato commercial genotypes (Solanum lycopersicum L). N forms, N metabolism, N use efficiency (NUE) parameters and amino acid profile were analyzed. A greater GS/GOGAT cycle enzyme activity could promote a better N integration in the plant, besides it promotes the generation of osmoprotective amino acids such as proline and improves the salt stress tolerance. A more effective N metabolism regulation indicates more salt tolerance. Our results showed a better effective N metabolism regulation by Grand Brix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abenavoli MR, Longo C, Lupini A, Miller AJ, Araniti F, Mercati F, Princi MP, Sunseri F (2016) Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiol Biochem 107:21–32

    Article  CAS  Google Scholar 

  • Ashraf M, Shahzad SM, Imtiaz M, Rizwan MS, Arif MS, Kausar R (2018) Nitrogen nutrition and adaptation of glycophytes to saline environment: a review. Arch Agron Soil Sci 64:1181–1206. https://doi.org/10.1080/03650340.2017.1419571

    Article  CAS  Google Scholar 

  • Baethgen WE, Alley MM (1989) A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun Soil Sci Plant Anal 20:961–969. https://doi.org/10.1080/00103628909368129

    Article  CAS  Google Scholar 

  • Bieleski RL, Turner NA (1966) Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Anal Biochem 17:278–293

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Causin HF (1996) The central role of amino acids on nitrogen utilization and plant growth. J Plant Physiol 149:358–362

    Article  Google Scholar 

  • De la Torre-Gonzalez A, Montesinos-Pereira D, Blasco B, Ruiz JM (2018) Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. J Plant Physiol 231:329–336

    Article  Google Scholar 

  • De la Torre-González A, Navarro-León E, Albacete A, Blasco B, Ruiz JM (2017) Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. J Plant Physiol 216:164–173

    Article  Google Scholar 

  • Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. J Plant Physiol 163:1247–1258

    Article  CAS  Google Scholar 

  • Debouba M, Maâroufi-Dghimi H, Suzuki A, Ghorbel MH, Gouia H (2007) Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann Bot 99:1143–1151

    Article  CAS  Google Scholar 

  • Elliot GC, Läuchli A (1985) Phosphorous efficiency and phosphate–iron interactions in maize. Agron J 77:399–403

    Article  Google Scholar 

  • Feierabend J, Beevers H (1972) Developmental studies on microbodies in wheat leaves. Planta 123:63–77

    Article  Google Scholar 

  • Galili G, Amir R, Fernie AR (2016) The regulation of essential amino acid synthesis and accumulation in plants. Annu Rev Plant Biol 67:153–178

    Article  CAS  Google Scholar 

  • Ghanem ME, Martínez-Andújar C, Albacete A, Pospíšilová H, Dodd IC, Pérez-Alfocea F, Lutts S (2011) Nitrogen form alters hormonal balance in salt-treated tomato (Solanum lycopersicum L.). J Plant Growth Regul 30:144–157

    Article  CAS  Google Scholar 

  • Gonzalez EM, Gordon AJ, James CL, Arrese-Igor C (1995) The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 26:1515–1523

    Article  Google Scholar 

  • Groat RG, Vance CP (1981) Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.). Developmental patterns and response to applied nitrogen. Plant Physiol 67:1198–1203

    Article  CAS  Google Scholar 

  • Hageman RH, Hucklesby DP (1971) Nitrate reductase. Meth Enzym 23:497–503

    Google Scholar 

  • Hildebrandt TM, Nesi AN, Araújo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579

    Article  CAS  Google Scholar 

  • Holder M, Rej R, Berjmeyer HU, Bergmeyer J (1983) Alanine aminotransferase. In: Bergmeyer HU, Bergmeyer I, Grassl M (eds) Methods of enzymatic analysis, 3rd edn. Verlag-Chemie, Weinheim, pp 444–456

    Google Scholar 

  • Igarashi D, Tsuchida H, Miyao M, Ohsumi C (2006) Glutamate:glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 142:901–910

    Article  CAS  Google Scholar 

  • Krom MD (1980) Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105:305–316. https://doi.org/10.1039/an9800500305

    Article  CAS  Google Scholar 

  • Lea PJ, Azevedo RA (2007) Nitrogen use efficiency. 2. Amino acid metabolism. Ann Appl Biol 151:269–275

    Article  CAS  Google Scholar 

  • Mishra P, Mishra V, Takabe T, Rai V, Singh NK (2016) Elucidation of salt-tolerance metabolic pathways in contrasting rice genotypes and their segregating progenies. Plant Cell Rep 35:1273–1286

    Article  CAS  Google Scholar 

  • Saito T, Matsukura C, Ban Y, Shoji K, Sugiyama M, Fukuda N, Nishimura S (2008) Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.). J Japan Soc Hort Sci 77:61–68

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Ríos JJ, Blasco B, Rosales MÁ, Melgarejo R, Romero L, Ruiz JM (2011) Ammonia production and assimilation: its importance as a tolerance mechanism during moderate water deficit in tomato plants. J Plant Physiol 168:816–823

    Article  Google Scholar 

  • Shao QS, Shu S, Du J, Xing WW, Guo SR, Sun J (2015) Effects of NaCl stress on nitrogen metabolism of cucumber seedlings. Russ J Plant Physiol 62:595–603

    Article  CAS  Google Scholar 

  • Shi-Wei GUO, Yi ZHOU, Ying-Xu GAO, Yong LI, Qi-Rong SHEN (2007) New insights into the nitrogen form effect on photosynthesis and photorespiration. Pedosphere 17:601–610

    Article  Google Scholar 

  • Siddiqi MY, Glass AD (1981) Utilization index: a modified phosphorous nutrition of eight forms of two clover species, Trifolium ambiguum and Trifolium repens. J Plant Nutr 4:289–302

    Article  Google Scholar 

  • Singh RP, Srivastava HS (1986) Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol Plant 66:413–416

    Article  CAS  Google Scholar 

  • Surabhi GK, Reddy AM, Kumari GJ, Sudhakar C (2008) Modulations in key enzymes of nitrogen metabolism in two high yielding genotypes of mulberry (Morus alba L.) with differential sensitivity to salt stress. Environ Exp Bot 64:171–179

    Article  CAS  Google Scholar 

  • Wallsgrove RM, Lea PJ, Miflin BJ (1979) Distribution of the enzymes of nitrogen assimilation within the pea leaf cell. Plant Physiol 63:232–236

    Article  CAS  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Ann rev plant biol 63:153–182

    Article  CAS  Google Scholar 

  • Zhonghua T, Yanju L, Xiaorui G, Yuangang Z (2011) The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci 174:135–144

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the PAI program (Plan Andaluz de Investigación, Grupo de investigación AGR282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro de la Torre-González.

Additional information

Communicated by G. Klobus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Torre-González, A., Navarro-León, E., Blasco, B. et al. Nitrogen and photorespiration pathways, salt stress genotypic tolerance effects in tomato plants (Solanum lycopersicum L.). Acta Physiol Plant 42, 2 (2020). https://doi.org/10.1007/s11738-019-2985-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2985-8

Keywords

Navigation