Skip to main content
Log in

The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The Shaker AKT1-like channels are considered to be involved in both high- and low-affinity K+ uptake and correlated with salt tolerance in glycophytes. Suaeda salsa (Suaeda maritima subsp. salsa), as a typical salt-accumulating halophyte, is able to absorb K+ efficiently while growing under saline conditions and taking in a large amount of Na+, thus maintaining the K+ concentration in its cells. In this study, the possible functions of the inward-rectifying K+ channel SsAKT1 in K+ uptake and salt tolerance in the halophyte S. salsa were investigated.

Methods

SsAKT1 from S. salsa was isolated by RT-PCR and characterized using yeast complementation; the responses of SsAKT1 to various KCl and NaCl treatments were investigated by real-time quantitative PCR.

Results

SsAKT1 consisted of 879 amino acid residues and shared high homology (60–67 %) with the identified inward-rectifying K+ channels AKT1 from other plants. The expression of SsAKT1 rescued the K+-uptake-defective phenotype of yeast strain CY162, and also suppressed the salt-sensitive phenotype of yeast strain G19, suggesting SsAKT1 functioned as an inward-rectifying K+ channel. SsAKT1 was predominantly expressed in roots, and was induced significantly by K+ starvation; transcript levels increased further on resupply of K+ (0.1–10 mM for 6 h) by 62 % in 0.1 mM K+ and 144–174 % in higher K+ concentrations (1–10 mM). Interestingly, the expression level of SsAKT1 in roots was also induced significantly by short-term treatment (6 h) with NaCl concentrations (25–250 mM).

Conclusions

These results demonstrate that the inward-rectifying K+ channel SsAKT1 might mediate both high- and low-affinity K+ uptake in S. salsa, but play a greater role in the low-affinity system. Furthermore, SsAKT1 might also be involved in salt tolerance by participating in the maintenance of K+ nutrition in S. salsa under salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52(9):1603–1612

    Article  PubMed  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89(9):3736–3740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171(9):670–687

    Article  PubMed  Google Scholar 

  • Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29(8):865–874

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Dinakar C (2013) Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Funct Plant Biol 40(9):819–831

    CAS  Google Scholar 

  • Bauer CS, Hoth S, Haga K, Philippar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171(9):723–731

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. BBA-Biomembr 1465(1–2):140–151

    Article  CAS  Google Scholar 

  • Boscari A, Clement M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W (2009) Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ 32(12):1761–1777

    Article  CAS  PubMed  Google Scholar 

  • Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI (2000) Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol 122(4):1387–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao Y, Ward JM, Kelly WB, Ichida AM, Gaber RF, Anderson JA, Uozumi N, Schroeder JI, Crawford NM (1995) Multiple genes, tissue specificity, and expression-dependent modulation contribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant Physiol 109(3):1093–1106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen D, Yang B, Kuo T (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84

    Article  CAS  PubMed  Google Scholar 

  • Chérel I (2004) Regulation of K+ channel activities in plants: from physiological to molecular aspects. J Exp Bot 55(396):337–351

    Article  PubMed  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Ann Rev Plant Physiol 31(1):239–298

    Article  CAS  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67(15):2511–2532

    Article  PubMed  Google Scholar 

  • Cuéllar T, Pascaud F, Verdeil JL, Torregrosa L, Adam-Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 51:58–69

    Article  Google Scholar 

  • Czempinski K, Gaedeke N, Zimmermann S, Müller-Röber B (1999) Molecular mechanisms and regulation of plant ion channels. J Exp Bot 50:955–966

    Article  CAS  Google Scholar 

  • Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14(1):119–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epstein E, Rains D, Elzam O (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci U S A 49(5):684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    Article  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28:89–121

    Article  CAS  Google Scholar 

  • Fuchs I, Stolzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221(2):212–221

    Article  CAS  PubMed  Google Scholar 

  • Gambale F, Uozumi N (2006) Properties of Shaker-type potassium channels in higher plants. J Membr Biol 210(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants-Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137(3):1105–1114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family-multiple functions. Ann Bot 99(6):1035–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000) Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210(5):723–731

    Article  CAS  PubMed  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280(5365):918–921

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Brodsky DE, Costa A, Kaneko T, Schiavo FL, Katsuhara M, Schroeder JI (2011) K+ transport by the OsHKT2; 4 transporter from rice with a typical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156(3):1493–1507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaddour R, Nasri N, M’rah S, Berthomieu P, Lachaâl M (2009) Comparative effect of potassium on K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress. CR Biol 332(9):784–794

    Article  CAS  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J Arid Environ 45(1):73–84

    Article  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189(1):54–81

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369(1–2):1–23

    Article  CAS  Google Scholar 

  • Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C (1996) Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J 9(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Lebaudy A, Véry AA, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581(12):2357–2366

    Article  CAS  PubMed  Google Scholar 

  • Leigh R, Wyn Jones R (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97(1):1–13

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Song J, Fan H, Feng G, Wang BS (2011) Accumulation of ions during seed development under controlled saline conditions of two Suaeda salsa populations is related to their adaptation to saline environments. Plant Soil 341(1–2):99–107

    Article  CAS  Google Scholar 

  • Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26(8):3387–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12(3):250–258

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ, Amtmann A (1999) K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann Bot 84(2):123–133

    Article  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci U S A 91(20):9272–9276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maathuis FJ, Ichida AM, Sanders D, Schroeder JI (1997) Roles of higher plant K+ channels. Plant Physiol 114(4):1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Cordero MA, Martinez V, Rubio F (2005) High-affinity K+ uptake in pepper plants. J Exp Bot 56(416):1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667

    Article  PubMed Central  PubMed  Google Scholar 

  • Mori S, Akiya M, Yamamura K, Murano H, Arao T, Kawasaki A, Higuchi K, Maeda Y, Yoshiba M, Tadano T (2010) Physiological role of sodium in the growth of the halophyte Suaeda salsa (L.) Pall. under high-sodium conditions. Crop Sci 50(6):2492–2498

    Article  Google Scholar 

  • Mori S, Suzuki K, Oda R, Higuchi K, Maeda Y, Yoshiba M, Tadano T (2011) Characteristics of Na+ and K+ absorption in Suaeda salsa (L.) Pall. Soil Sci Plant Nutr 57(3):377–386

    Article  CAS  Google Scholar 

  • Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171(9):688–695

    Article  CAS  PubMed  Google Scholar 

  • Pilot G, Pratelli R, Gaymard F, Meyer Y, Sentenac H (2003) Five-group distribution of the Shaker-like K+ channel family in higher plants. J Mol Evol 56:418–434

    Article  CAS  PubMed  Google Scholar 

  • Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ Transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol 153(2):863–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quintero FJ, Garciadeblas B, Rodríguez-Navarro A (1996) The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′), 5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8(3):529–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159(3):940–945

    PubMed Central  PubMed  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335(1–2):155–180

    Article  Google Scholar 

  • Ros R, Lemaillet G, Fonrouge A, Daram P, Enjuto M, Salmon J, Thibaud J, Sentenac H (1999) Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels. Physiol Plant 105(3):459–468

    Article  CAS  Google Scholar 

  • Rubio F, Nieves-Cordones M, Aleman F, Martinez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134(4):598–608

    Article  CAS  PubMed  Google Scholar 

  • Santa-María GE, Danna CH, Czibener C (2000) High-affinity potassium transport in barley roots. Ammonium-sensitive and-insensitive pathways. Plant Physiol 123(1):297–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. BBA-Biomembr 1465(1–2):127–139

    Article  CAS  Google Scholar 

  • Schachtman DP, Liu WH (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4(7):281–287

    Article  PubMed  Google Scholar 

  • Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol 23(1):441–471

    Article  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256(5057):663–665

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92(5):627–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    Article  CAS  PubMed  Google Scholar 

  • Shao Q, Zhao C, Han N, Wang BS (2008) Cloning and expression pattern of SsHKT1 encoding a putative cation transporter from halophyte Suaeda salsa. DNA Seq 19(2):106–114

    Article  CAS  PubMed  Google Scholar 

  • Shao Q, Han N, Ding T, Zhou F, Wang BS (2014) SsHKT1;1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct Plant Biol 41(8):790–802

    Article  CAS  Google Scholar 

  • Song J, Wang BS (2014) Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot. doi:10.1093/aob/mcu194

    Google Scholar 

  • Song J, Fan H, Zhao Y, Jia Y, Du X, Wang BS (2008) Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquat Bot 88(4):331–337

    Article  CAS  Google Scholar 

  • Song J, Chen M, Feng G, Jia Y, Wang BS, Zhang F (2009) Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa. Plant Soil 314(1–2):133–141

    Article  CAS  Google Scholar 

  • Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999) Potassium uptake supporting plant growth in the absence of AKT1 channel activity-inhibition by ammonium and stimulation by sodium. J Gen Physiol 113(6):909–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125(2):604–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129(4):1482–1493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Uozumi N, Nakamura T, Schroeder JI, Muto S (1998) Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proc Natl Acad Sci U S A 95:9773–9778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122(4):1249–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54(1):575–603

    Article  PubMed  Google Scholar 

  • Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? J Plant Physiol 171(9):748–769

    Article  PubMed  Google Scholar 

  • Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48(3):342–353

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    Article  CAS  PubMed  Google Scholar 

  • Wang SM, Zheng WJ, Ren JZ, Zhang CL (2002) Selectivity of various types of salt-resistant plants for K+ over Na+. J Arid Environ 52:457–472

    Article  Google Scholar 

  • Wang SM, Zhao GQ, Gao YS, Tang ZC, Zhang CL (2004) Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat. J Plant Nutr 27(10):1841–1857

    Article  CAS  Google Scholar 

  • Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145(2):559–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Tian X, Eneji AE, Li Z (2014) Functional characterization of GhAKT1, a novel Shaker-like K+ channel gene involved in K+ uptake from cotton (Gossypium hirsutum). Gene 545(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Shi D, Wang D (2008) Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul 56(2):179–190

    Article  CAS  Google Scholar 

  • Yeo AR (1981) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: intracellular compartmentation of ions. J Exp Bot 32:487–497

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: evaluation of the effect of salinity upon growth. J Exp Bot 31:1171–1183

    Article  CAS  Google Scholar 

  • Zhang JL (2008) Low-affinity Na+ uptake and accumulation in the halophyte Suaeda maritima. Dissertation, Lanzhou University

  • Zhang JL, Shi HZ (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60

    Article  CAS  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2013) Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritima. Plant Soil 368:629–640

    Article  CAS  Google Scholar 

  • Zhao KF, Hai F, Ungar I (2002) Survey of halophyte species in China. Plant Sci 163(3):491–498

    Article  Google Scholar 

  • Zhao KF, Song J, Feng G, Zhao M, Liu JP (2011) Species, types, distribution, and economic potential of halophytes in China. Plant Soil 342(1–2):495–509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Professor Alonso Rodríguez-Navarro from Centro de Biotechnología y Genómica de Plantas, Universidad Politécnica de Madrid, Spain, for providing Saccharomyces cerevisiae strain G19. We are also very grateful to Professor Timothy J. Flowers from University of Sussex, UK, for critically reviewing the manuscript and for valuable suggestions. This work was supported by the National Basic Research Program of China (973 Program, grant No. 2014CB138701), the National Natural Science Foundation of China (grant No. 31170431), Specialized Research Fund for the Doctoral Program of Higher Education of China (grant No. 20130211130001), and the Fundamental Research Funds for the Central Universities (lzujbky-2014-m01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suo-Min Wang.

Additional information

Responsible Editor: Frans J.M Maathuis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Nucleotide sequences and deduced amino acid residues of the SsAKT1. The nucleotide sequences and amino acid residues are indicated by numbers of the left. The start codon (ATG) and the stop codon (TAA) are underlined (GIF 325 kb)

High Resolution Image (TIFF 2683 kb)

Supplementary Fig. S2

Phylogenetic groups of SsAKT1 and AKT1 from plants. The phylogenetic tree was generated by MEGA 6.0 software using the neighbour-joining method and 1000 bootstrap replicates. Bootstrap values (as percentages) are indicated at the corresponding nodes. The scale bar corresponds to a distance of 10 changes per 100 amino acid positions. SsAKT1 is shown as ●. Sources of AKT1 and their GenBank accession numbers are as follows: MKT1 (Mesembryanthemum crystallinum, AF267753), VvK1.2 (Vitis vinifera, FR669116), GmAKT1 (Glycine max, XP_003549784), NtAKT1 (Nicotiana tomentosiformis, XP_009619489), PutAKT1 (Puccinellia tenuiflora, GU327382), TaAKT1 (Triticum aestivum, AF207745), AtAKT1 (Arabidopsis thaliana, NM_128222), OsAKT1 (Oryza sativa, Os01g45990), ZMK1 (Zea mays, CAA68912), HvAKT1 (Hordeum vulgare, DQ465922) and ZxAKT1 (Zygophyllum xanthoxylum, GQ857474). (GIF 19 kb)

High Resolution Image (TIFF 4012 kb)

Supplementary Table S1

Primer sequences used in this study (DOC 37 kb)

Supplementary Table S2

The data of △Ct value corresponding to the expression data in Fig. 6 (DOC 62 kb)

Supplementary Table S3

The data of △Ct value corresponding to the expression data in Fig. 7 (DOC 29.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, HR., Ma, Q., Zhang, JL. et al. The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition. Plant Soil 395, 173–187 (2015). https://doi.org/10.1007/s11104-015-2539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2539-9

Keywords

Navigation