Skip to main content

Advertisement

Log in

Mitigation of greenhouse gas emissions from reed canary grass in paludiculture: effect of groundwater level

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Combination of rewetting and wetland crop cultivation (paludiculture) is pursued as a wider carbon dioxide (CO2) mitigation option in drained peatland. However, information on the overall greenhouse gas (GHG) balance for paludiculture is lacking. We investigated the GHG balance of peatlands grown with reed canary grass (RCG) and rewetted to various extents.

Methods

Gas fluxes of CO2, methane (CH4) and nitrous oxide (N2O) were measured with a static chamber technique for 10 months from mesocosms sown with RCG and manipulated to ground water levels (GWL) of 0, −10, −20, −30 and −40 cm below the soil surface. Gross primary production (GPP) was estimated from the above ground biomass yield.

Results

The mean dry biomass yield across all water table treatments was 6 Mg ha−1 with no significant differences between the treatments. Raising the GWL to the surface decreased both the net ecosystem exchange (NEE) of CO2 and N2O emissions whereas CH4 emissions increased. Total cumulative GHG emissions (for 10 months) corresponded to 0.08, 0.13, 0.61, 0.68 and 0.98 kg CO2 equivalents m−2 from the GWL treatments at 0, −10, −20, −30 and −40 cm below the soil surface, respectively.

Conclusions

The results showed that a reduction in total GHG emission can be achieved without losing the productivity of newly established RCG when GWL is maintained close to the surface. Further studies should address the practical constrains and long-term productivity of RCG cultivation in rewetted peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R, Ludwig F (1997) Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–1698

    Article  CAS  Google Scholar 

  • Askaer L, Elberling B, Friborg T, Jørgensen CJ, Hansen BU (2011) Plant-mediated CH4 transport and C gas dynamics quantified in-situ in a Phalaris arundinacea-dominant wetland. Plant Soil 343:287–301

    Article  CAS  Google Scholar 

  • Audet J, Elsgaard L, Kjaergaard C, Larsen SE, Hoffmann CC (2013a) Greenhouse gas emissions from a Danish riparian wetland before and after restoration. Ecol Eng 57:170–182

    Article  Google Scholar 

  • Audet J, Johansen JR, Andersen PM, Baattrup-Pedersen A, Brask-Jensen KM, Elsgaard L, Kjaergaard C, Larsen SE, Hoffmann CC (2013b) Methane emissions in Danish riparian wetlands: ecosystem comparison and pursuit of vegetation indexes as predictive tools. Ecol Indic 34:548–559

    Article  CAS  Google Scholar 

  • Beetz S, Liebersbach H, Glatzel S, Jurasinski G, Buczko U, Höper H (2013) Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences 10:1067–1082

    Article  Google Scholar 

  • Berglund Ö, Berglund K (2011) Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol Biochem 43:923–931

    Article  CAS  Google Scholar 

  • Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ (2003) Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:345–351

    Article  CAS  Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  • Development Core Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dinsmore KJ, Skiba UM, Billett MF, Rees RM (2009) Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant Soil 318:229–242

    Article  CAS  Google Scholar 

  • Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ü, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land‐use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4:372–391

    Article  CAS  Google Scholar 

  • Elsgaard L, Görres C-M, Hoffmann CC, Blicher-Mathiesen G, Schelde K, Petersen SO (2012) Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management. Agric Ecosyst Environ 162:52–67

    Article  CAS  Google Scholar 

  • Ge ZM, Kellomäki S, Zhou X, Peltola H, Wang KY, Martikainen PJ (2012a) Seasonal physiological responses and biomass growth in a bioenergy crop (Phalaris arundinacea L.) under elevated temperature and CO2, subjected to different water regimes in boreal conditions. Bioenergy Res 5:637–648

    Article  CAS  Google Scholar 

  • Ge ZM, Zhou X, Kellomäki S, Biasi C, Wang KY, Peltola H, Martikainen PJ (2012b) Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environ Exp Bot 75:150–158

    Article  CAS  Google Scholar 

  • Glatzel S, Forbrich I, Krüger C, Lemke S, Gerold G (2008) Small scale controls of greenouse gas release under elevated N deposition rates in a restoring peat bog in NW Germany. Biogeosciences 5:925–935

    Article  CAS  Google Scholar 

  • Görres CM, Kutzbach L, Elsgaard L (2014) Comparative modeling of annual CO2 flux of temperate peat soils under permanent grassland management. Agric Ecosyst Environ 186:64–76

    Article  Google Scholar 

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77

    Article  CAS  Google Scholar 

  • Grønlund A, Sveistrup TE, Søvik AK, Rasse DP, Kløve B (2006) Degradation of cultivated peat soils in Northern Norway based on field scale CO2, N2O and CH4 emission measurements. Arch Agron Soil Sci 52:149–159

  • Haefner JW (2005) Modelling biological systems: Principles and applications, 2nd edn. Springer, New York

    Google Scholar 

  • Hendriks DMD, van Huissteden J, Dolman AJ, van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4:411–424

    Article  CAS  Google Scholar 

  • Herbst M, Friborg T, Schelde K, Jensen R, Ringgaard R, Vasquez V, Thomsen AG, Soegaard H (2013) Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland. Biogeosciences 10:39–52

    Article  Google Scholar 

  • Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J 45:311–316

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007. In: Solomon S, Qin D, Manning M et al (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom, p 996

    Google Scholar 

  • Joabsson A, Christensen TR, Wallen B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    Article  PubMed  Google Scholar 

  • Joosten H, Tapio-Biström M-L, Tol S (2012) Peatlands-guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Food and Argiculture Organisation of the United Nations and Wetlands International, Rome

    Google Scholar 

  • Jørgensen CJ, Struwe S, Elberling B (2012) Temporal trends in N2O flux dynamics in a Danish wetland—effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Glob Chang Biol 18:210–222

    Article  Google Scholar 

  • Jungkunst HF, Flessa H, Scherber C, Fiedler S (2008) Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol Biochem 40:2047–2054

    Article  CAS  Google Scholar 

  • Juottonen H, Hynninen A, Nieminen M, Tuomivirta TT, Tuittila E-S, Nousiainen H, Kell DK, Yrjälä K, Tervahauta A, Fritze H (2012) Methane-cycling microbial communities and methane emission in natural and restored peatlands. Appl Environ Microbiol 78:6386–6389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kandel TP, Elsgaard L, Karki S, Lærke PE (2013a) Biomass yield and greenhouse gas emissions from a drained fen peatland cultivated with reed canary grass under different harvest and fertilizer regimes. Bioenergy Res 6:883–895

    Article  CAS  Google Scholar 

  • Kandel TP, Elsgaard L, Lærke PE (2013b) Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley. GCB Bioenergy 5:548–561

    Article  CAS  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Agronomy monographs 9, 2nd edn. ASA and SSSA, Madison, pp 643–698

    Google Scholar 

  • Komulainen V-M, Tuittila E-S, Vasander H, Laine J (1999) Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. J Appl Ecol 36:634–648

    Article  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  • Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024

    Article  CAS  Google Scholar 

  • Laine A, Byrne KA, Kiely G, Tuittila E-S (2007) Patterns in vegetation and CO2 dynamics along a water level gradient in a lowland blanket bog. Ecosystems 10:890–905

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Mahmood MS, Strack M (2011) Methane dynamics of recolonized cutover minerotrophic peatland: implications for restoration. Ecol Eng 37:1859–1868

    Article  Google Scholar 

  • Mäkiranta P, Riutta T, Penttilä T, Minkkinen K (2010) Dynamics of net ecosystem CO2 exchange and heterotrophic soil respiration following clearfelling in a drained peatland forest. Agric For Meteorol 150:1585–1596

    Article  Google Scholar 

  • Maljanen M, Komulainen V-M, Hytönen J, Martikainen PJ, Laine J (2004) Carbon dioxide, nitrous oxide and methane dynamics in boreal organic agricultural soils with different soil characteristics. Soil Biol Biochem 36:1801–1808

    Article  CAS  Google Scholar 

  • Maljanen M, Sigurdsson BD, Guðmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries-present knowledge and gaps. Biogeosciences 7:2711–2738

    Article  CAS  Google Scholar 

  • Mander Ü, Järveoja J, Maddison M, Soosaar K, Aavola R, Ostonen I, Salm J-O (2011) Reed canary grass cultivation mitigates greenhouse gas emissions from abandoned peat extraction areas. GCB Bioenergy 4:462–474

    Article  Google Scholar 

  • Pedersen AR, Petersen SO, Schelde K (2010) A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci 61:888–902

    Article  Google Scholar 

  • Petersen SO, Hoffmann CC, Schäfer C-M, Blicher-Mathiesen G, Elsgaard L, Kristensen K, Larsen SE, Torp SB, Greve MH (2012) Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosciences 9:403–422

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2012) nlme: linear and nonlinear mixed effects models. R package version 3.1–103

  • Regina K, Syväsalo E, Hannukkala A, Esala M (2004) Fluxes of N2O from farmed peat soils in Finland. Eur J Soil Sci 55:591–599

    Article  CAS  Google Scholar 

  • Riutta T, Laine J, Tuittila E-S (2007) Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–733

    Article  CAS  Google Scholar 

  • Roobroeck D, Butterbach-Bahl K, Brüggemann N, Boeckx P (2010) Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: short-term responses following nitrate addition. Eur J Soil Sci 61:662–670

    Article  CAS  Google Scholar 

  • Rowson JG, Worrall F, Evans MG (2013) Predicting soil respiration from peatlands. Sci Total Environ 442:397–404

    Article  PubMed  CAS  Google Scholar 

  • Rückauf U, Augustin J, Russow R, Merbach W (2004) Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biol Biochem 36:77–90

    Article  Google Scholar 

  • Saari P, Saarnio S, Heinonen J, Alm J (2013) Emissions and dynamics of N2O in a buffer wetland receiving water flows from a forested peatland. Boreal Environ Res 18:164–180

    CAS  Google Scholar 

  • Saarnio S, Winiwarter W, Leitão J (2009) Methane release from wetlands and watercourses in Europe. Atmos Environ 43:1421–1429

    Article  CAS  Google Scholar 

  • Schäfer C-M, Elsgaard L, Hoffmann CC, Petersen SO (2012) Seasonal methane dynamics in three temperate grasslands on peat. Plant Soil 357:339–353

    Article  Google Scholar 

  • Shurpali NJ, Hyvönen NP, Huttunen JT, Clement RJ, Reichstein M, Nykänen H, Biasi C, Martikainen PJ (2009) Cultivation of a perennial grass for bioenergy on a boreal organic soil-carbon sink or source? GCB Bioenergy 1:35–50

    Article  CAS  Google Scholar 

  • Shurpali NJ, Strandman H, Kilpeläinen A, Huttunen J, Hyvönen NP, Biasi C, Kellomäki S, Martikainen PJ (2010) Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil. GCB Bioenergy 2:130–138

    CAS  Google Scholar 

  • Silvan N, Regina K, Kitunen V, Vasander H, Laine J (2002) Gaseous nitrogen loss from a restored peatland buffer zone. Soil Biol Biochem 34:721–728

    Article  CAS  Google Scholar 

  • Silvan N, Tuittila E-S, Kitunen V, Vasander H, Laine J (2005) Nitrate uptake by Eriophorum vaginatum controls N2O production in a restored peatland. Soil Biol Biochem 37:1519–1526

    Article  CAS  Google Scholar 

  • Soini P, Riutta T, Yli-Petäys M, Vasander H (2010) Comparison of vegetation and CO2 dynamics between a restored cut-away peatland and a pristine fen: evaluation of the restoration success. Restor Ecol 18:894–903

    Article  Google Scholar 

  • Strack M, Waller MF, Waddington JM (2006) Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems 9:278–287

    Article  CAS  Google Scholar 

  • Tuittila E-S, Komulainen V-M, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120:563–574

    Article  Google Scholar 

  • Tuittila E-S, Komulainen V-M, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cut-away peatland. Glob Chang Biol 6:569–581

    Article  Google Scholar 

  • van Beek CL, Pleijter M, Jacobs CMJ, Velthof GL, van Groenigen JW, Kuikman PJ (2010) Emissions of N2O from fertilized and grazed grassland on organic soil in relation to groundwater level. Nutr Cycl Agroecosyst 86:331–340

    Article  Google Scholar 

  • van de Riet BP, Hefting MM, Verhoeven JTA (2013) Rewetting drained peat meadows: risks and benefits in terms of nutrient release and greenhouse gas exchange. Water Air Soil Pollut 224:1440–1452

    Article  Google Scholar 

  • von Post L (1922) Sveriges Geologiska Undersöknings torvinventering och några av dess hittills vunna resultat. Svenska Mosskultureföreningens 1:1–27

    Google Scholar 

  • Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:G03018

    Google Scholar 

  • Waddington JM, Warner KD (2001) Atmospheric CO2 sequestration in restored mined peatlands. Ecoscience 8:359–368

    Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22785

    Article  CAS  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  • Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila E-S (2009) Rewetting of cutaway peatlands: are we re-creating hot spots of methane emissions? Restor Ecol 17:796–806

    Article  Google Scholar 

  • Wilson D, Farell C, Mueller C, Hepp S, Renou-Wilon F (2013) Rewetted industrial cutaway peatlands in western Ireland: a prime location for climate change mitigation? Mires Peat 11:1–22

    Google Scholar 

  • Yang J, Liu J, Hu X, Li X, Wang Y, Li H (2013) Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biol Biochem 61:52–60

    Article  CAS  Google Scholar 

  • Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290

    Article  Google Scholar 

  • Zhou X, Ge ZM, Kellomäki S, Wang KY, Peltola H, Martikainen P (2011) Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimes. GCB Bioenergy 3:223–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was partly financed by the Danish Centre for Food and Agriculture (DCA) as a part of BioBase programme. The authors would like to thank Sanmohan Baby for statistical advice and Bodil Stensgaard, Finn Henning Christensen, Holger Bak, Jørgen M. Nielsen and Stig T. Rasmussen for their technical assistance. The authors would also like to thank Søren O. Petersen for his valuable suggestions during the internal review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Karki.

Additional information

Responsible Editor: Tim Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1S

(DOCX 391 kb)

Fig. 2S

(DOCX 2.36 MB)

Table 1S

(DOCX 22.1 KB)

Table 2S

(DOCX 23.4 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, S., Elsgaard, L., Audet, J. et al. Mitigation of greenhouse gas emissions from reed canary grass in paludiculture: effect of groundwater level. Plant Soil 383, 217–230 (2014). https://doi.org/10.1007/s11104-014-2164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2164-z

Keywords

Navigation