Skip to main content

Advertisement

Log in

Elemental and stable isotope composition of Pinus halepensis foliage along a metal(loid) polluted gradient: implications for phytomanagement of mine tailings in semiarid areas

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Aleppo pine (Pinus halepensis Mill.) is a widely used species for restoring degraded semiarid areas, but its use for the revegetation of metal(loid) polluted soils has not been thoroughly investigated. The main goal of this research was to study the ecophysiological status and elemental composition of spontaneous populations of Pinus halepensis growing on mine tailings to assess their use in phytomanagement of mine spoils in semiarid climates.

Methods

Edaphic characteristics and the physiological (by stable isotopes) and nutritional status of pine trees were determined on mine tailings, in the metalloid-polluted surroundings and a non-polluted control area.

Results

Low soil phosphorus availability at the tailings was found to be a more important limiting factor for pine physiological performance than high soil metal(lloid)s concentrations. Foliar phosphorus concentrations showed a strong negative correlation with foliar sulphur concentrations along the studied transect. The carbon and oxygen isotopic composition (δ13C and δ18O) of pine needles indicated that trees at the tailings were less water stressed than those in surroundings or control areas. The low foliar δ15N of pines growing at the tailings was due to low soil fertility and/or a heavy reliance on symbiotic ectomycorrhizal fungi for nitrogen uptake.

Conclusions

The results of this study indicate that Pinus halepensis is a suitable tree species for the phytostablisation of neutral or slightly-alkaline mining wastes in semiarid environments, thanks to its drought hardiness and good adaptation to low soil fertility and salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94. doi:10.1071/FP06228

    Article  CAS  Google Scholar 

  • Barbour MM, Farquhar GD (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell Environ 23:473–485. doi:10.1046/j.1365-3040.2000.00575.x

    Article  CAS  Google Scholar 

  • Barnes CJ, Allison GB (1983) The distribution of deuterium and O-18 in dry soil 1. Theory J Hydrol 60:141–156. doi:10.1016/0022-1694(83)90018-5

    Article  CAS  Google Scholar 

  • Bhattacharya A, Routh J, Jacks G, Bhattacharya P, Mörth M (2006) Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (northern Sweden). Appl Geochem 21:1760–1780. doi:10.1016/j.apgeochem.2006.06.011

    Article  CAS  Google Scholar 

  • Bonanomi G, Incerti G, Mazzolen S (2011) Assessing occurrence, specificity, and mechanisms of plant facilitation in terrestrial ecosystems. Plant Ecol 212:1777–1790. doi:10.1007/s11258-011-9948-5

    Article  Google Scholar 

  • Caravaca F, García C, Hernández MT, Roldán A (2002) Aggregate stability changes after organic amendment and mycorrhizal inoculation in the afforestation of a semiarid site with Pinus halepensis. Appl Soil Ecol 19:199–208. doi:10.1016/S0929-1393(01)00189-5

    Article  Google Scholar 

  • Clarke N, Cools N, Derome J, Derome K, De Vos B, Fuerst A, Koenig N, Kowalska A, Mosello R, Tartari GA, Ulrich E (2008) Quality assurance and control in laboratories: a review of possible quality checks and other forms of assistance ICP Forests Working Group on QA/QC in Laboratories, (Version 1, May 2008): 56S

  • Conesa HM, Schulin R (2010) The Cartagena-La Unión mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. J Environ Monitor 12:1225–1233. doi:10.1039/c000346h

    Article  CAS  Google Scholar 

  • Conroy JP, Küppers M, Küppers B, Virgona J, Barlow EWR (1988) The influence of CO2 enrichment, phosphorus deficiency and water stress on the growth, conductance and water use of Pinus radiata D. Don. Plant, Cell Environ 11:91–98. doi:10.1111/1365-3040.ep11604890

    CAS  Google Scholar 

  • Courtney R (2013) Mine tailings composition in a historic site: implications for ecological restoration. Environ Geochem Hlth 35:79–88. doi:10.1007/s10653-012-9465-z

    Article  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992. doi:10.1111/j.1469-8137.2009.02917.x

    Article  CAS  PubMed  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  • Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2010) Nutritional status of mediterranean trees growing in a contaminated and remediated area. Water, Air, Soil Pollut 205:305–321. doi:10.1007/s11270-009-0075-z

    Article  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167. doi:10.1016/0883-2927(95)00040-2

    Article  CAS  Google Scholar 

  • Evans R (2001) Physiological mechanisms influencing plant nitrogen isotope composition. TrendsPlant Sci 6:121–126. doi:10.1016/S1360-1385(01)01889-1

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis annual review of plant physiology and plant molecular biology 40:503–537. doi:10.1146/annurev.arplant.40.1.503

  • Farquhar GD, Cernusak LA, Barnes B (2007) Heavy water fractionation during transpiration. Plant Physiol 143:11–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francois LE, Maas EV (1999) Crop response and management of salt affected soils. In: Pessarakli M (ed) Hand book of plant and crop stress. Marcel Dekker, United States, pp 169–201

    Google Scholar 

  • Fuentes D, Disante KB, Valdecantos A, Cortina J, Ramón-Vallejo V (2007) Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc. Chemosphere 66:412–420. doi:10.1016/j.chemosphere.2006.06.027

    Article  CAS  PubMed  Google Scholar 

  • García C, Hernández T, Costa F, Ceccanti B, Masciandaro G (1993) The dehydrogenase activity of soil as an ecological marker in processes of perturbed system regeneration. In: Gallardo-Lancho J (ed) Proceedings of the XI international symposium of environmental biogeochemistry. Salamanca, Spain, pp 89–100

    Google Scholar 

  • García-Lorenzo ML, Pérez-Sirvent C, Martínez-Sánchez MJ, Molina-Ruiz J (2012) Trace elements contamination in an abandoned mining site in a semiarid zone. J Geochem Explor 113:23–35. doi:10.1016/j.gexplo.2011.07.001

    Article  Google Scholar 

  • Gee GW, Baude JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1: Physical and mineralogical methods, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 383–410

    Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth –promoting bactéria for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084. doi:10.1021/es072013i

    Article  CAS  PubMed  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–283. doi:10.1007/PL00008856

    Article  Google Scholar 

  • Kord B, Mataji A, Babaie S (2010) Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution. Int J Environ Sci Te 7:79–84

    Article  CAS  Google Scholar 

  • López-Serrano FR, De las Heras J, González-Ochoa AI, García-Morote FA (2005) Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halepensis forest stands. Forest Ecol Manag 210:321–336. doi:10.1016/j.foreco.2005.02.042

    Article  Google Scholar 

  • Maestre FT, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? Forest Ecol Manag 198:303–317. doi:10.1016/j.foreco.2004.05.040

    Article  Google Scholar 

  • Maestre FT, Cortina J, Bautista S, Bellot J (2003) Does Pinus halepensis facilitate the establishment of shrubs in Mediterranean semi-arid afforestations? Forest Ecol Manage 176:147–160. doi:10.1016/S0378-1127(02)00269-4

    Article  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environ Health Persp 116:278–283. doi:10.1289/ehp.10608

    Article  CAS  Google Scholar 

  • Moreno-Gutiérrez C, Barberá GG, Nicolás E, De Luis M, Castillo VM, Martínez-Fernández F, Querejeta JI (2011) Leaf δ 18O of remaining trees is affected by thinning intensity in a semiarid pine forest. Plant, Cell Environ 34:1009–1019. doi:10.1111/j.1365-3040.2011.02300.x

    Article  Google Scholar 

  • Norland MR, Veith DL (1995) Revegetation of coarse taconite iron ore tailing using municipal waste compost. J Hazard Mater 41:123–134. doi:10.1016/0304-3894(94)00115-W

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939. Washington, DC: U.S. Government Printing Office

  • Párraga-Aguado I, Álvarez-Rogel J, González-Alcaraz MN, Jiménez-Cárceles FJ, Conesa HM (2013a) Assessment of metal(loid)s availability and their uptake by Pinus halepensis in a Mediterranean forest impacted by abandoned tailings. Ecol Eng 58:84–90. doi:10.1016/j.ecoleng.2013.06.013

    Article  Google Scholar 

  • Párraga-Aguado I, González-Alcaraz MN, Álvarez-Rogel J, Jiménez-Cárceles FJ, Conesa HM (2013b) The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings. Environ Pollut 176:134–143. doi:10.1016/j.envpol.2013.01.023

    Article  PubMed  Google Scholar 

  • Querejeta JI, Roldán A, Albadalejo J, Castillo V (1998) The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid mediterranean site with Pinus halepensis. Forest Science 44:203–211

    Google Scholar 

  • Querejeta JI, Allen MF, Alguacil MM, Roldan A (2007) Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Funct Plant Biol 34:683–691. doi:10.1071/FP07061

    Article  CAS  Google Scholar 

  • Querejeta JI, Barberá GG, Granados A, Castillo VM (2008) Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid región of Spain. Forest Ecol Manag 254:56–64. doi:10.1016/j.foreco.2007.07.026

    Article  Google Scholar 

  • Ramírez DA, Querejeta JI, Bellot J (2009) Bulk leaf δ 18O and δ 13C reflect the intensity of intraspecific competition for water in a semi-arid tussock grassland. Plant, Cell Environ 32:1346–1356. doi:10.1111/j.1365-3040.2009.02002.x

    Article  Google Scholar 

  • Ravit B, Ehrenfeld JG, Haggblom MM (2003) A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries 26:465–474. doi:10.1007/BF02823723

    Article  Google Scholar 

  • Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65:77–84. doi:10.1016/j.marenvres.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  • Renault S, Lait C, Zwiazek JJ, MacKinnon M (1998) Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environ Pollut 102:177–184. doi:10.1016/S0269-7491(98)00099-2

    Article  CAS  Google Scholar 

  • Rufo L, De la Fuente V (2010) Successional dynamics of the climatophile vegetation of the mining territory of the Río Tinto Basin (Huelva, Spain): soil characteristics and implications for phytoremediation. Arid Land Res Manag 24:301–327. doi:10.1080/15324982.2010.502916

    Article  CAS  Google Scholar 

  • Ruiz-Navarro A, Barbera GG, Navarro Cano JA, Albadalejo J, Castillo VM (2009) Soil dynamics in Pinus halepensis reforestation: effect of microenvironments and previous land use. Geoderma 153:353–361. doi:10.1016/j.geoderma.2009.08.024

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J, Rodà F (2005) Changes in nutrient use efficiency, status and retranslocation in young post-fire regeneration Pinus halelpensis in response to sudden N and P input, irrigation and removal of competing vegetation. Trees-Struct Funct 19:233–250. doi:10.1007/s00468-004-0374-3

    Article  CAS  Google Scholar 

  • Sardans J, Rodà F, Peñuelas J (2006) Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. ballota and Pinus halepensis on different soils and under different competitive pressure. Trees-Struct Funct 20:619–632. doi:10.1007/s00468-006-0077-z

    Article  Google Scholar 

  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357. doi:10.1007/s004420000466

    Article  Google Scholar 

  • Singh DK, Sale PWG, Pallaghy CK, Mckenzie BM (2000) Phosphorus concentrations in the leaves of defoliated white clover affect abscisic acid formation and transpiration in drying soil. New Phytol 146:249–259. doi:10.1046/j.1469-8137.2000.00644.x

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195. doi:10.1016/S0065-2113(08)60504-0

    Article  CAS  Google Scholar 

  • SPSS (2010) SPSS 19.0.0 for Windows Software. SPSS Inc., IBM Company, USA

    Google Scholar 

  • Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund- Rasmussen K (2001) Cadmium and copper release kinetics in relation to afforestation of cultivated soil. Geochim Cosmochim Acta 65:1233–1242. doi:10.1016/S0016-7037(00)00602-5

    Article  CAS  Google Scholar 

  • Sun FF, Wen DZ, Kuang YW, Li J, Zhang JG (2009) Concentrations of sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L.) trees growing along an urban–rural gradient in Guangzhou, China. Environ Monit Assess 154:263–274. doi:10.1007/s10661-008-0394-3

    Article  CAS  PubMed  Google Scholar 

  • ter Braak CJ, Smilauer P (1999) Canoco for Windows v. 4.02. Centre for Biometry Wageningen CPRO-DLO. Wageningen, Netherlands

  • Tropek R, Kadlec T, Hejda M, Kocarek P, Skuhrovec J, Malenovsky I, Vodka S, Spitzer L, Banar P, Konvicka M (2012) Technical reclamation are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol Eng 43:13–18. doi:10.1016/j.ecoleng.2011.10.010

    Article  Google Scholar 

  • U.S.D.A. (United States Department of Agriculture) (1996) Soil survey laboratory methods manual. Soil survey investigations. Report No. 42, United States

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Warren CR (2011) How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus? Tree Physiol 31:727–739. doi:10.1093/treephys/tpr064

    Article  CAS  PubMed  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408. doi:10.1007/s11104-008-9686-1

    Article  CAS  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol Biochem 22:1167–1169. doi:10.1016/0038-0717(90)90046-3

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support for this research was provided by the Ministerio de Economía y Competitividad of Spain and FEDER (Project CTM2011-23958) and Fundación Séneca of Comunidad Autónoma de la Región de Murcia (Project 15296/PI/10). Dr. Héctor M. Conesa thanks the Spanish Ministerio de Economía y Competitividad and UPCT for funding through the “Ramon y Cajal” programme (Ref. RYC-2010-05665). We thank SAIT (Luis Alberto Alcolea, Magdalena Vázquez, Ana Vanessa Caparrós, Vicente Muñoz y Ana Belen Rodríguez) from Universidad Politécnica de Cartagena and Maria José Espinosa Antolinos from CEBAS-CSIC for their lab and analytical assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector M. Conesa.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parraga-Aguado, I., Querejeta, JI., González-Alcaraz, M.N. et al. Elemental and stable isotope composition of Pinus halepensis foliage along a metal(loid) polluted gradient: implications for phytomanagement of mine tailings in semiarid areas. Plant Soil 379, 93–107 (2014). https://doi.org/10.1007/s11104-014-2038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2038-4

Keywords

Navigation