Skip to main content

Advertisement

Log in

Effect of willow short rotation coppice on soil properties after three years of growth as compared to forest, grassland and arable land uses

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Despite many studies on the impact of arable land conversion to Short Rotation Coppice (SRC), few studies have been carried out on soil biota. This study aims at assessing biological and physico-chemical soil properties that are affected by SRC compared to forestry, grassland and an agrosystem.

Methods

All samples were collected in the Aisne valley (France), from the same type of soil, with four land uses, i.e. willow SRC, agrosystem, grassland and alluvial forest, 3 years after SRC was planted. We studied fertility, the biological community (earthworm diversity, density and biomass, bacterial and fungal density and community structures) and biochemical parameters (enzyme activities, basal respiration and nitrification).

Results

After 3 years’ growth, soil biological parameters (fungal abundance, laccase activity, anecic earthworm proportion and earthworm diversity) and CEC were higher in the SRC than in the agrosystem soil. In parallel, fungal abundance was higher in SRC than in forest and grassland soils.

Conclusion

Compared to annual arable crops, SRC promoted biological properties. However, in the short term, the parameters we measured were lower than in the forest and grassland soils. The use of certain parameters as indicators of soil functioning/quality assessment to discriminate the four land uses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ananyeva ND, Susyan EA, Chernova OV et al (2006) The ratio of fungi and bacteria in the biomass of different types of soil determined by selective inhibition. Microbiology 75:702–707. doi:10.1134/S0026261706060130

    Article  CAS  Google Scholar 

  • Andrews S, Karlen D, Cambardella C (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962

    Article  CAS  Google Scholar 

  • Aon M, Colaneri A (2001) II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl Soil Ecol 18:255–270. doi:10.1016/S0929-1393(01)00161-5

    Article  Google Scholar 

  • Bailey V, Smith J, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007. doi:10.1016/S0038-0717(02)00033-0

    Article  CAS  Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix × dasyclados). Z Pflanzenernähr Bodenk 169:516–522. doi:10.1002/jpln.200521925

    Article  CAS  Google Scholar 

  • Baum S, Weih M, Busch G et al (2009) The impact of Short Rotation Coppice plantations on phytodiversity. Landbauforsch Volk 59:163–170

    Google Scholar 

  • Baum S, Bolte A, Weih M (2012a) Short Rotation Coppice (SRC) plantations provide additional habitats for vascular plant species in agricultural mosaic landscapes. Bioenerg Res 5:573–583. doi:10.1007/s12155-012-9195-1

    Article  Google Scholar 

  • Baum S, Bolte A, Weih M (2012b) High value of short rotation coppice plantations for phytodiversity in rural landscapes. Glob Chang Biol Bioenergy 4:728–738. doi:10.1111/j.1757-1707.2012.01162.x

    Article  Google Scholar 

  • Birkhofer K, Bezemer TM, Bloem J et al (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308. doi:10.1016/j.soilbio.2008.05.007

    Article  CAS  Google Scholar 

  • Blouin M, Hodson ME, Delgado EA et al (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64:161–182. doi:10.1111/ejss.12025

    Article  Google Scholar 

  • Bonneau M, Souchier B (1994) Pédologie Tome 2: Constituants et propriétés du sol, Elsevier Masson

  • Bouché MB (1972) Lombriciens de France, Ecologie et systématique, I.N.R.A., Ann. zool. - écol. anim., numéro spécial

  • Brejda J, Moorman T, Karlen D, Dao T (2000) Identification of regional soil quality factors and indicators: I. Central and southern high plains. Soil Sci Soc Am J 64:2115–2124

    Article  CAS  Google Scholar 

  • Burns RG, Dick RP (2002) Enzymes in the environment. Activity, ecology and applications, Marcel Dekker Inc

  • Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644. doi:10.1016/j.pedobi.2005.06.003

    Article  CAS  Google Scholar 

  • Carson JK, Gleeson DB, Clipson N, Murphy DV (2010) Afforestation alters community structure of soil fungi. Fungal Biol 114:580–584. doi:10.1016/j.funbio.2010.04.008

    Article  PubMed  Google Scholar 

  • Carter M (2002) Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agron J 94:38–47

    Article  Google Scholar 

  • Cébron A, Beguiristain T, Faure P et al (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Biochem Microbiol 75:6322–6330. doi:10.1128/AEM.02862-08

    Google Scholar 

  • Chaer G, Myrold D, Bottomley P (2009) A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biol Biochem 41:822–830. doi:10.1016/j.soilbio.2009.02.005

    Article  CAS  Google Scholar 

  • Chan K (2001) An overview of some tillage impacts on earthworm population abundance and diversity — implications for functioning in soils. Soil Tillage Res 57:179–191. doi:10.1016/S0167-1987(00)00173-2

    Article  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2000) Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil 220:151–163. doi:10.1023/A:1004712401721

    Article  CAS  Google Scholar 

  • Chen CR, Condron LM, Xu ZH (2008) Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a review. For Ecol Manag 255:396–409. doi:10.1016/j.foreco.2007.10.040

    Article  Google Scholar 

  • Cluzeau D, Guernion M, Chaussod R et al (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72. doi:10.1016/j.ejsobi.2011.11.003

    Article  Google Scholar 

  • Costa P, Souza-Motta C, Malosso E (2012) Diversity of filamentous fungi in different systems of land use. Agrofor Syst 85:195–203

    Article  Google Scholar 

  • Cuendet G (1995) Identification des lombriciens de Suisse. Vauderens 19p

  • Curry JP, Byrne D, Schmidt O (2002) Intensive cultivation can drastically reduce earthworm populations in arable land. Eur J Soil Biol 38:127–130. doi:10.1016/S1164-5563(02)01132-9

    Article  Google Scholar 

  • De Vries FT, Hoffland E, van Eekeren N et al (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103. doi:10.1016/j.soilbio.2006.01.008

    Article  CAS  Google Scholar 

  • De Vries FT, Bloem J, van Eekeren N et al (2007) Fungal biomass in pastures increases with age and reduced N input. Soil Biol Biochem 39:1620–1630. doi:10.1016/j.soilbio.2007.01.013

    Article  CAS  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran J, Jones A (eds) Methods for assessing soil quality. pp 247–271

  • Dimitriou I, Baum C, Baum S et al (2009) The impact of short rotation coppice (SRC) cultivation on the environment. Landbauforsch Volk 59:159

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and Ecology of Earthworms Third edition, Chapman&Hall.

  • Ens J, Farrell R, Bélanger N (2013) Early effects of afforestation with willow (Salix purpurea, “Hotel”) on soil carbon and nutrient availability. Forest 137–154. doi: 10.3390/f4010137

  • Faasch RJ, Patenaude G (2012) The economics of short rotation coppice in Germany. Biomass Bioenergy 45:27–40. doi:10.1016/j.biombioe.2012.04.012

    Article  Google Scholar 

  • Failing L, Gregory R (2003) Ten common mistakes in designing biodiversity indicators for forest policy. J Environ Manag 68:121–132. doi:10.1016/S0301-4797(03)00014-8

    Article  Google Scholar 

  • Felske A, Akkermans A, De Vos W (1998) Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol 64:4581–4587

    PubMed Central  PubMed  CAS  Google Scholar 

  • Floch C, Alarcon-Gutiérrez E, Criquet S (2007) ABTS assay of phenol oxidase activity in soil. J Microbiol Meth 71:319–324. doi:10.1016/j.mimet.2007.09.020

    Article  CAS  Google Scholar 

  • Frey S, Elliott E, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585. doi:10.1016/S0038-0717(98)00161-8

    Article  CAS  Google Scholar 

  • Friis K, Reddersen J, Petersen J (1999) Planting SRC willow on arable fields: effects on earthworm fauna. 105:71–78

  • Green VS, Stott DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. doi:10.1016/j.soilbio.2005.06.020

    Article  CAS  Google Scholar 

  • Hailu A, Chambers R (2012) A Luenberger soil-quality indicator. J Prod Anal 38:145–154. doi:10.1007/s11123-011-0255-x

    Article  Google Scholar 

  • Harinikumar K, Bagyaraj D (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fertil Soils 18:115–118. doi:10.1007/BF00336456

    Article  Google Scholar 

  • Havlicek E (2012) Soil biodiversity and bioindication: from complex thinking to simple acting. Eur J Soil Biol 49:80–84. doi:10.1016/j.ejsobi.2012.01.009

    Article  Google Scholar 

  • Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11. doi:10.1111/j.1574-6941.2003.tb01040.x

    Article  PubMed  CAS  Google Scholar 

  • Insam H, Mitchell C, Dormaar J (1991) Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol Biochem 23:459–464

    Article  CAS  Google Scholar 

  • Jandl G, Baum C, Blumschein A, Leinweber P (2012) The impact of short rotation coppice on the concentrations of aliphatic soil lipids. Plant Soil 350:163–177. doi:10.1007/s11104-011-0892-x

    Article  CAS  Google Scholar 

  • Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217. doi:10.1021/jf00062a013

    Article  CAS  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW et al (1997) Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Khasa PD, Chakravarty P, Robertson A et al (2002) The mycorrhizal status of selected poplar clones introduced in Alberta. Biomass Bioenergy 22:99–104. doi:10.1016/S0961-9534(01)00072-1

    Article  Google Scholar 

  • Lagerlöf J, Pålsson O, Arvidsson J (2011) Earthworms influenced by reduced tillage, conventional tillage and energy forest in Swedish agricultural field experiments. Acta Agric Scand Sect B Soil Plant Sci 62:235–244. doi:10.1080/09064710.2011.602717

    Google Scholar 

  • Lavelle P, Spain A (2005) Soil ecology. Springer, Amsterdam

    Google Scholar 

  • Ledin S (1998) Environmental consequences when growing short rotation forests in Sweden. Biomass Bioenergy 15:49–55. doi:10.1016/S0961-9534(97)10054-X

    Article  Google Scholar 

  • Liang C, da Jesus EC, Duncan DS et al (2012) Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: impact of crop species and soil properties. Appl Soil Ecol 54:24–31. doi:10.1016/j.apsoil.2011.11.015

    Article  Google Scholar 

  • Lockwell J, Guidi W, Labrecque M (2012) Soil carbon sequestration potential of willows in short-rotation coppice established on abandoned farm lands. Plant Soil 360:299–318. doi:10.1007/s11104-012-1251-2

    Article  CAS  Google Scholar 

  • Lueders T, Wagner B, Claus P, Friedrich MW (1998) Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 64:4581–4587. doi:10.1046/j.1462-2920.2003.00535.x

    Google Scholar 

  • Makeschin F (1994) Effects of energy forestry on soils. Biomass Bioenergy 6:63–79

    Article  CAS  Google Scholar 

  • Marx M, Wood M, Jarvis S (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640. doi:10.1016/S0038-0717(01)00079-7

    Article  CAS  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U et al (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Kluwer Academic Publishers, Dordrecht, pp 1–27

    Google Scholar 

  • Oades J (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • Peigne J, Cannavaciuolo M, Gautronneau Y et al (2009) Earthworm populations under different tillage systems in organic farming. Soil Tillage Res 104:207–214

    Article  Google Scholar 

  • Pérès G, Piron D, Bellido A, Cluzeau D (2008) Earthworms used as indicators of agricultural managements. Fresen Environ Bull 17:1181–1189

    Google Scholar 

  • Pfiffner L, Luka H (2007) Earthworm populations in two low-input cereal farming systems. Appl Soil Ecol 37:184–191. doi:10.1016/j.apsoil.2007.06.005

    Article  Google Scholar 

  • Plassart P, Akpa Vinceslas M, Gangneux C et al (2008) Molecular and functional responses of soil microbial communities under grassland restoration. Agric Ecosyst Environ 127:286–293. doi:10.1016/j.agee.2008.04.008

    Article  CAS  Google Scholar 

  • Püttsepp Ü, Rosling A, Taylor A (2004) Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantation. Forest Ecol Manag 196:413–424. doi:10.1016/j.foreco.2004.04.003

    Article  Google Scholar 

  • Ratcliff AW, Busse MD, Shestak CJ (2006) Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl Soil Ecol 34:114–124. doi:10.1016/j.apsoil.2006.03.002

    Article  Google Scholar 

  • Rezaei SA, Gilkes RJ, Andrews SS (2006) A minimum data set for assessing soil quality in rangelands. Geoderma 136:229–234. doi:10.1016/j.geoderma.2006.03.021

    Article  CAS  Google Scholar 

  • Robinson K, Karp A, Taylor G (2004) Defining leaf traits linked to yield in short-rotation coppice Salix. Biomass Bioenergy 26:417–431. doi:10.1016/j.biombioe.2003.08.012

    Article  Google Scholar 

  • Rossi J, Franc A, Rousseau G (2009) Indicating soil quality and the GISQ. Soil Biol Biochem 41:444–445. doi:10.1016/j.soilbio.2008.10.004

    Article  CAS  Google Scholar 

  • Rowe RL, Hanley ME, Goulson D et al (2011) Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–336. doi:10.1016/j.biombioe.2010.08.046

    Article  Google Scholar 

  • Rytter R, Rytter L (1998) Growth, decay, and turnover rates of fine roots of basket willows. Can J For Res 28:893–902

    Article  Google Scholar 

  • Saha S, Prakash V, Kundu S et al (2008) Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya. Eur J Soil Biol 44:309–315. doi:10.1016/j.ejsobi.2008.02.004

    Article  CAS  Google Scholar 

  • Scheu S, Parkinson D (1994) Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biol Biochem 26:1515–1525

    Article  CAS  Google Scholar 

  • Schnurer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schoenholtz S, Miegroet H, Burger J (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecol Manag 138:335–356. doi:10.1016/S0378-1127(00)00423-0

    Article  Google Scholar 

  • Schrader S, Zhang H (1997) Earthworm casting: stabilization or destabilization of soil structure? Soil Biol Biochem 29:469–475. doi:10.1016/S0038-0717(96)00103-4

    Article  CAS  Google Scholar 

  • Schulz U, Brauner O, Gruay H (2009) Animal diversity on short-rotation coppices - a review. Landbauforsch Volk 59(181):171

    Google Scholar 

  • Simpson RT, Frey S, Six J, Thiet R (2004) Preferential accumulation of microbial carbon in aggregate structures of no-tillage soils. Soil Sci Soc Am J 68:1249–1255

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN et al (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264. doi:10.1111/j.1461-0248.2008.01245.x

    PubMed  Google Scholar 

  • Šlapokas T, Granhall U (1991) Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability for earthworms. Biol Fertil Soils 10:241–248. doi:10.1007/BF00337374

    Article  Google Scholar 

  • Stenberg B (1999) Monitoring soil quality of arable land: microbiological indicators. Acta Agric Scand Sect B Soil Plant Sci 49:1–24. doi:10.1080/09064719950135669

    Google Scholar 

  • Suthar S (2009) Earthworm communities a bioindicator of arable land management practices: a case study in semiarid region of India. Ecol Indic 9:588–594. doi:10.1016/j.ecolind.2008.08.002

    Article  CAS  Google Scholar 

  • Thion C, Cébron A, Beguiristain T, Leyval C (2012) Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants. FEMS Microbiol Ecol 82:169–181. doi:10.1111/j.1574-6941.2012.01414.x

    Article  PubMed  CAS  Google Scholar 

  • Toljander Y, Weih M, Taylor A (2006) Mycorrhizal colonisation of willows in plantations and adjacent natural stands. Proceedings of the 5th International Conference on Mycorrhiza

  • Van der Heijden E (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193. doi:10.1007/s005720000077

    Article  Google Scholar 

  • Velasquez E, Lavelle P, Andrade M (2007) GISQ, a multifunctional indicator of soil quality. Soil Biol Biochem 39:3066–3080. doi:10.1016/j.soilbio.2007.06.013

    Article  CAS  Google Scholar 

  • Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28:1549–1554. doi:10.1016/S0038-0717(96)00293-3

    Article  CAS  Google Scholar 

  • Wardle DA, Yeates GW, Watson RN, Nicholson KS (1993) Response of soil microbial biomass and plant litter decomposition to weed management strategies in maize and asparagus cropping systems. Soil Biol Biochem 25:857–868. doi:10.1016/0038-0717(93)90088-S

    Article  Google Scholar 

  • Whalen JK, Costa C (2003) Linking spatio-temporal dynamics of earthworm populations to nutrient cycling in temperate agricultural and forest ecosystems: the 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia 47:801–806. doi:10.1078/0031-4056-00262

    Google Scholar 

  • Zaborski ER (2003) Allyl isothiocyanate: an alternative chemical expellant for sampling earthworms. Appl Soil Ecol 22:87–95. doi:10.1016/S0929-1393(02)00106-3

    Article  Google Scholar 

Download references

Acknowledgments

We thank Philippe Lucas, the owner of the SRC plot, Florent Germon from Luzéal Company and Antoine Dalle from Salix Energie for their help and collaboration in the field work. This project was supported by Kinomé company and ANRT (National Agency of Research and Technology) with a CIFRE (Industrial Convention of Research Formation) contract number 2009/13/07. ADEME («Agence de l’Environnement et de la Maîtrise de l’Energie») sponsored and supported the research (contract number 0975C0095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leyval.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauffer, M., Leyval, C., Brun, JJ. et al. Effect of willow short rotation coppice on soil properties after three years of growth as compared to forest, grassland and arable land uses. Plant Soil 377, 423–438 (2014). https://doi.org/10.1007/s11104-013-1986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1986-4

Keywords

Navigation