Skip to main content

Advertisement

Log in

Diversity of filamentous fungi in different systems of land use

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Microbial population and activity can be influenced by changes in the physical and chemical conditions of the soil. The objective of this study was to compare fungal diversity under different agricultural management systems and associated differences in soil properties. This research was carried out in three areas, representing the Atlantic Forest, AFS and cassava (Manihot esculenta Crantz) monoculture system. Five composite samples were collected during the rainy and dry seasons from each area. Using the composite soil samples, fungal isolation was carried out using a serial dilution technique. Physical, chemical and DGGE analyses of the filamentous fungi community were performed. The fungal isolation data were used to calculate ecological indices of diversity, species richness, equitability, dominance, similarity and density. In general, Atlantic Forest soil presented the highest ecological indices followed by the AFS. The DGGE technique revealed that the structure of the soil mycobiota of the Atlantic Forest and AFS are more than 50% similar. The data indicate that the similarity of the structure and composition of soil mycobiota between AFS and Atlantic Forest is mainly due to the conservation of above-ground plant diversity, and the conservation of soil characteristics can be attributed to the absence of pesticides and fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, New York

    Google Scholar 

  • Altieri MA (2002) Agroecologia: bases científicas para uma agricultura sustentável. Editora Agropecuária, Guaíba

    Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. doi:10.1111/j.1462-2920.2004.00675.x

    Article  PubMed  CAS  Google Scholar 

  • Azaz AD (2003) Isolation and identification of soilborne fungi in fields irrigated by gap in harran plain using two isolation methods. Turk J Bot 27:83–92

    Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grassland. Soil Biol Biochem 31:317–321. doi:10.1016/S0038-0717(98)00121-7

    Article  CAS  Google Scholar 

  • Bleve G, Rizzotti L, Dellaglio F et al (2003) Development of reverse transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl Environ Microbiol 69:4116–4122. doi:10.1128/AEM.69.7.4116-4122.2003

    Article  PubMed  CAS  Google Scholar 

  • Bresolin JD, Bustamante MMC, Krüger RH, Silva MRSS, Perez KS (2010) Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado. Braz J Microbiol 41:391–403. doi:10.1590/S1517-83822010000200021

    Article  CAS  Google Scholar 

  • Calegari A (1998) Espécies para cobertura de solo. In: Darolt MR (ed) Plantio direto: pequena propriedade sustentável, IAPAR, Londrina, pp 65–94 (Circular, 101)

  • Castro APC, Quirino BF, Pappas G Jr, Kurokawa AS, Neto EL, Krüger RH (2008) Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture. Arch Microbiol 190:129–139. doi:10.1007/S00203-008-0374-6

    Article  PubMed  CAS  Google Scholar 

  • Cavalcanti MAQ, Oliveira LG, Fernandes MJ, Lima DM (2006) Fungos filamentosos isolados do solo em municípios na região Xingó, Brasil. Acta Bot Bras 20:831–837. doi:10.1590/S0102-33062006000400008

    Article  Google Scholar 

  • Chaim A, Castro VLSS, Corrales FM, Galvão JAH, Cabral OMR, Nicolella G (1999) Método para monitorar perdas na aplicação de agrotóxicos na cultura do tomate. Pesq Agropec Bras 34:741–747. doi:10.1590/S0100-204X1999000500003

    Article  Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249. doi:10.1111/j.1574-6941.2005.00026.x

    Article  PubMed  CAS  Google Scholar 

  • Domsch KH, Gams W, Anderson T (2007) Compendium of soil fungi. IHW–Verlag, San Francisco

    Google Scholar 

  • Gams W (2003) Biodiversity of soil-inhabiting fungi. Biodiv Conserv 16:69–72. doi:10.1007/s10531-006-9121-y

    Google Scholar 

  • Garbeva P, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455

    Article  PubMed  CAS  Google Scholar 

  • Gliessman SR (2005) Agroecologia: processos ecológicos em agricultura sustentável. Editora da UFRGS, Porto Alegre

    Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  PubMed  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed 11 Nov 2010

  • Kowalchuk GA, De Souza FA, Van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581. doi:10.1046/j.0962-1083.2001.01457.x

    Article  PubMed  CAS  Google Scholar 

  • Lambais MR, Cury JC, Maluche-Baretta C, Bull RC (2005) Diversidade microbiana nos solos: definindo novos paradigmas. In: Vidal-Torrado P, Alleoni LRR, Cooper M, Silva AP, Cardoso EJ (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 43–84

    Google Scholar 

  • Lamepe (Laboratório de Meteorologia de Pernambuco) (2010) Dados Pluviométricos. Instituto de Tecnologia de Pernambuco. http://www.itep.br/LAMEPE.asp. Accessed 15 Dec 2010

  • Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: variation in time and space. Can J Bot 73:1391–1398

    Article  Google Scholar 

  • MacDicken KG, Vergara NT (1990) Agroforestry: classification and management. Wiley, New York

    Google Scholar 

  • Malosso E, Waite IS, English L, Hopkins DW, O’Donnell AG (2006) Microbial diversity of Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol 29:552–561. doi:10.1007/s00300-005-0088-z

    Article  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimisation of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    PubMed  CAS  Google Scholar 

  • Mitchell JI, Zuccaro A (2006) Sequences, the environment and fungi. Mycologist 20:62–74. doi:10.1016/j.mycol.2005.11.004

    Article  Google Scholar 

  • Naeem S, Hahn DR, Schuurman G (2000) Producer-decomposer co-dependency influences biodiversity effects. Nature 403:762–764. doi:10.1038/35001568

    Article  PubMed  CAS  Google Scholar 

  • Nair PKR (1993) Introduction to agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Neves MCP, Almeida DL, De-Polli H, Guerra JGM, Ribeiro RLD (2004) Agricultura orgânica: uma estratégia para o desenvolvimento de sistemas agrícolas sustentáveis. EDUR, Seropédica

    Google Scholar 

  • Ogram A (2000) Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biol Biochem 32:1499–1504. doi:10.1016/S0038-0717(00)00088-2

    Article  CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Persiani AM, Maggi O, Casado MA, Pineda FD (1998) Diversity and variability in soil fungi from disturbed tropical rain forest. Mycologia 90:206–214

    Article  Google Scholar 

  • Pfenning LH, Abreu LM (2006) Diversity of microfungi in tropical soils. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Soil biodiversity in Amazonian and other Brazilian ecosystems. CABI, Wallingford

    Google Scholar 

  • Prade CA, Matsumura AT, Ott AP, Porto ML (2007) Diversidade de fungos do solo em sistemas agroflorestais de citrus com diferentes tipos de manejo no município de Roca Sales, Rio Grande do Sul, Brasil. Biociências 15:73–81

    Google Scholar 

  • Reber HH (1992) Simultaneous estimates of the diversity and the degradative capability of heavy-metal-affected soil bacterial communities. Biol Fertil Soils 13:181–186. doi:10.1007/BF00336277

    CAS  Google Scholar 

  • Sigler WV, Turco RF (2002) The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl Soil Ecol 21:107–118. doi:10.1016/S0929-1393(02)00088-4

    Article  Google Scholar 

  • Silva MRSS (2004) Produção de serapilheira, biomassa e diversidade de comunidades bacterianas do solo em áreas de Cerrado sob diferentes usos e manejos. Dissertação, Universidade de Brasília

  • Smit E, Leeflang P, Glandorf B, Van Elsas JD, Wernard K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    PubMed  CAS  Google Scholar 

  • Tangjang S, Arunachalam K, Arunachalam A, Shukla AK (2009) Microbial population dynamics of soil under traditional Agroforestry Systems in northeast India. Res J Soil Biol 1:1–7. doi:10.3923/rjsb.2009.1.7

    Google Scholar 

  • Tótola MR, Chaer GM (2002) Microrganismos e processos microbiológicos como indicadores da qualidade dos solos. In: Alvarez VH, Schaefer CEGR, Barros NF, Mello JWV, Costa LM (eds) Tópicos em Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 195–276

    Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936. doi:10.1017/S0953756200002471

    Article  CAS  Google Scholar 

  • Valpassos MAR, Cavalcante EGS, Cassiolato AMR, Alves MC (2001) Effects of soil management systems on soil microbial activity, bulk density and chemical properties. Pesq Agropec Bras 36:1539–1545. doi:10.1590/S0100-204X2001001200011

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Financiadora de Estudos e Projetos-FINEP and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (via the Post-Graduation Programme on Fungal Biology, Universidade Federal de Pernambuco), and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq as a scholarship to the first author. The authors are also grateful to Mr. Jones S. Pereira, owner of the São João smallholding, Mrs Luciana, owner of the Dona Luciana smallholding, and the personnel of the Centro de Desenvolvimento Agroecológico Sabiá (NGO) for the agroforestry initiative in Pernambuco, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Malosso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, P.M.O., Souza-Motta, C.M. & Malosso, E. Diversity of filamentous fungi in different systems of land use. Agroforest Syst 85, 195–203 (2012). https://doi.org/10.1007/s10457-011-9446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-011-9446-8

Keywords

Navigation