Skip to main content

Advertisement

Log in

Impact of Changes in Soil Attributes and Composition following Anthropization Related to Agricultural Practices in the Amazon Region

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

In response to the ongoing expansion of agriculture and land use changes in the Amazon region, new studies are necessary to understand the impacts of agricultural practices on Amazonian soils. The objective was to assess the changes induced in soil horizons by different management practices. The research was conducted in the National Forest of Caxiuanã, located in the municipality of Melgaço, Pará State, Brazil. A completely randomized 3 × 4 factorial design was employed, incorporating three types of vegetation (20-year-old secondary forest—SoilFS20, 5-year-old secondary forest—SoilFS5, and coivara—cutting and burning of native vegetation—SoilLTM) and four effective soil depths (0–5 cm, 5–10 cm, 10–20 cm, and 20–30 cm), with nine replicates for each combination. To enhance accuracy of the required assessment of the modifications induced in the physical and chemical attributes of the soil, isotopic composition of δ13C and δ15N was utilized. In areas subjected to clearing (SoilFS5 and SoilLTM), significant concentrations of carbon (C) and nitrogen (N) were observed in the 20–30 cm depth due to soil disturbance, which incorporated the litter into the deeper horizons. However, no significant differences in the C/N ratio were detected among the studied areas at the effective soil depth. Regardless of soil depth, SoilFS20 exhibited lower acidity, δ13C, δ15N, sandy and clay content, as well as iron (Fe) content, while displaying higher levels of SOM, zinc (Zn), calcium (Ca), manganese (Mn), potassium (K), silt, sodium (Na), copper (Cu), and phosphorus (P) content compared to the other sites. The results showed significant variations in the chemical and physical properties of the soil among the study sites, with SoilFS20 standing out in several characteristics. The increase in carbon stock in SoilFS20 indicated positive responses to specific management practices. Analyses of carbon, nitrogen concentrations, and stable isotopes highlighted SoilFS5 as distinctly different from the others. These findings contribute to the understanding of soil dynamics under different management practices, providing valuable insights for sustainable natural resource management in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  • de Almeida CA, Coutinho AC, Esquerdo JCDM, Adami M, Venturieri A, Diniz CG, Dessay N, Durieux L, Gomes- AR (2016) High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazon 46:291–302. https://doi.org/10.1590/1809-4392201505504

    Article  Google Scholar 

  • Angst G, Mueller KE, Nierop KGJ, Simpson MJ (2021) Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol Biochem 156:108189. https://doi.org/10.1016/j.soilbio.2021.108189

    Article  CAS  Google Scholar 

  • Aprile F (2014) Application of humus obtained from the anaerobic decomposition of aquatic plants in the soil fertilization of traditional cultures of the Amazon. Int J Plant Soil Sci 3:1031–1043. https://doi.org/10.9734/IJPSS/2014/11256

    Article  Google Scholar 

  • de Araújo EA, Ker JC, de Mendonça E, S, Silva IR da, Oliveira EK, (2011) Impacto da conversão floresta - pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico. Acta Amazon 41:103–114. https://doi.org/10.1590/S0044-59672011000100012

    Article  Google Scholar 

  • Araujo EA, Ker JC, Mendonça E de S, da Silva IR, Oliveira EK (2011) Impact of forest-pasture conversion on stocks and dynamics of soil carbon and humic substances in the Amazon. Acta Amazon 41:103–114. https://doi.org/10.1590/s0044-59672011000100012

  • Araujo ECG, Sanquetta CR, Dalla Corte AP, Pelissari AL, Orso GA, Silva TC (2023) Global review and state-of-the-art of biomass and carbon stock in the Amazon. J Environ Manage 331:117251. https://doi.org/10.1016/j.jenvman.2023.117251

    Article  CAS  PubMed  Google Scholar 

  • Arvor D, Tritsch I, Barcellos C, Jégou N, Dubreuil V (2017) Land use sustainability on the South-Eastern Amazon agricultural frontier: Recent progress and the challenges ahead. Appl Geogr 80:86–97. https://doi.org/10.1016/j.apgeog.2017.02.003

    Article  Google Scholar 

  • Ayalew T, Yoseph T, Högy P, Cadisch G (2022) Leaf growth, gas exchange and assimilation performance of cowpea varieties in response to Bradyrhizobium inoculation. Heliyon 8:e08746. https://doi.org/10.1016/j.heliyon.2022.e08746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batjes NH (2006) Organic carbon stocks in the soils of Brazil. Soil Use Manag 21:22–24. https://doi.org/10.1111/j.1475-2743.2005.tb00102.x

    Article  Google Scholar 

  • Batlle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agric Ecosyst Environ 137:47–58. https://doi.org/10.1016/j.agee.2010.02.003

    Article  CAS  Google Scholar 

  • Bernoux M, Arrouays D, Cerri CC, Bourennane H (1998) Modelling vertical distribution of carbon in Oxisols of the Western Brazilian Amazon (Rondônia). Soil Sci 163:941–951

  • Boddey RM, Jantalia CP, Machado PLO de A, Madari BE, Milori DMBP, Urquiaga S (2015) Estoques de carbono nos solos do Brasil – quantidade e mecanismos de acumulo e preservação. In: Lima MA, Boddey RM, Alves BJR, Machado PLO de A, Urquiaga S (eds) Estoques de 18 carbono e emissões de gases de efeito estufa na agropecuária brasileira., Embrapa. Brasilia, pp 31–80

  • Cerri CEP, Feigl BJ, Cerri CC (2008) Dinâmica da matéria orgânica do solo na Amazônia. In: Santos G de A, Silva LS da, Canellas LP, Camargo FAO (eds) Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais., Metropole. Porto Alegre

  • Chertov OG, Nadporozhskaya MA (2018) Humus forms in forest soils: Concepts and classifications. Eurasian Soil Sci 51:1142–1153. https://doi.org/10.1134/S1064229318100022

    Article  Google Scholar 

  • Christina M, Nouvellon Y, Laclau JP, Stape JL, Bouillet JP, Lambais GR, le Maire G (2017) Importance of deep water uptake in tropical eucalypt forest. Funct Ecol 31:509–519. https://doi.org/10.1111/1365-2435.12727

    Article  Google Scholar 

  • Churchman GJ, Singh M, Schapel A, Sarkar B, Bolan N (2020) Clay Minerals as the key to the sequestration of carbon in soils. Clays Clay Miner 68:135–143. https://doi.org/10.1007/s42860-020-00071-z

    Article  CAS  Google Scholar 

  • Costa Junior C, Piccolo M de C, Neto MS, de Camargo PB, Cerri CC, Bernoux M (2011) Carbono total e δ 13C em agregados do solo sob vegetação nativa e pastagem no bioma Cerrado. Rev Bras Cienc Solo 35:1241–1252. https://doi.org/10.1590/S0100-06832011000400017

  • Cotrufo MF, Conant RT, Paustian K (2011) Soil organic matter dynamics: land use, management and global change. Plant Soil 338:1–3. https://doi.org/10.1007/s11104-010-0617-6

    Article  CAS  Google Scholar 

  • Cotrufo MF, Lavallee JM (2022) Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv Agron 172:1–66. https://doi.org/10.1016/bs.agron.2021.11.002

    Article  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Glob Chang Biol 17:1658–1670

    Article  Google Scholar 

  • Dou X, Xu X, Shu X, Zhang Q, Cheng X (2016) Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China. Ecol Eng 87:263–270. https://doi.org/10.1016/j.ecoleng.2015.11.052

    Article  Google Scholar 

  • Falloon P, Jones CD, Cerri CE, Al-Adamat R, Kamoni P, Bhattacharyya T, Easter M, Paustian K, Killian K, Coleman K, Milne E (2007) Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agric Ecosyst Environ 122:114–124. https://doi.org/10.1016/j.agee.2007.01.013

    Article  CAS  Google Scholar 

  • Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. In: Organic Geochemistry. Pergamon, pp 669–678

  • Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans Royal Soc b: Biol Sci 363:815–830

    Article  CAS  Google Scholar 

  • Lal R (2020) Soil organic matter and water retention. Agron J 112:3265–3277. https://doi.org/10.1002/agj2.20282

    Article  Google Scholar 

  • Lima HV, Barros KRM, Canellas LP, Kern DC (2012) Fracionamento químico da matéria orgânica e caracterização física de Terra Preta de Índio. Revista De Ciências Agrárias 55:44–51. https://doi.org/10.4322/rca.2012.037

    Article  Google Scholar 

  • Lotse Tedontsah VP, Mbog MB, Bitom-Mamdem L, Ngon Ngon GF, Edzoa RC, Tassongwa B, Bitom D, Etame J (2023) Spatial distribution and evolution of pH as a function of cation exchange capacity, sum of exchangeable bases, and organic matter and aluminum in the soils of Foumban. Appl Environ Soil Sci 2023:1–11. https://doi.org/10.1155/2023/5172804

    Article  CAS  Google Scholar 

  • Lu YH, Bauer JE, Canuel EA, Chambers RM, Yamashita Y, Jaffé R, Barrett A (2014) Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119:275–292. https://doi.org/10.1007/s10533-014-9965-2

    Article  CAS  Google Scholar 

  • Mantovani VA, Terra M de CNS, Rodrigues AF, Silva CA, Guo L, de Mello JM, de Mello CR (2024) Unprecedentedly high soil carbon stocks and their spatial variability in a seasonally dry Atlantic Forest in Brazil. Catena (Amst) 235:107696 https://doi.org/10.1016/j.catena.2023.107696

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition 20 of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46:45–65

    Article  CAS  Google Scholar 

  • Montoya E, Lombardo U, Levis C, Aymard GA, Mayle FE (2020) Human Contribution to Amazonian Plant Diversity: Legacy of Pre-Columbian Land Use in Modern Plant Communities. pp 495–520

  • Moraes JL, Cerri CC, Melillo JM, Kicklighter D, Neill C, Skole DL, Steudler PA (1995) Soil Carbon Stocks of the Brazilian Amazon Basin. Soil Sci Soc Am J 59:244–247. https://doi.org/10.2136/sssaj1995.03615995005900010038x

    Article  CAS  Google Scholar 

  • Moreira A, Teixeira W, Martins G, Falcão NPS (2009) Métodos de caracterização química de amostras de horizontes antrópicos das terras pretas de índio. In: W. Teixeira D, Kern B, Madari H, Lima WI (eds) As Terras Pretas de Índio da Amazônia: Sua caracterização e uso deste conhecimento na criação de novas áreas.

  • Nel T, Bruneel Y, Smolders E (2023) Comparison of five methods to determine the cation exchange capacity of soil. J Plant Nutr Soil Sci 186:311–320. https://doi.org/10.1002/jpln.202200378

    Article  CAS  Google Scholar 

  • Obalum SE, Chibuike GU, Peth S, Ouyang Y (2017) Soil organic matter as sole indicator of soil degradation. Environ Monit Assess 189:1–19. https://doi.org/10.1007/s10661-017-5881-y

    Article  Google Scholar 

  • Obalum SE, Watanabe Y, Igwe CA, Obi ME, Wakatsuki T (2012) Carbon stock in the solum of some coarse-textured soils under secondary forest, grassland fallow, and bare footpath in the derived savanna of south-eastern Nigeria. Soil Research 50:157. https://doi.org/10.1071/SR11096

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159. https://doi.org/10.1038/298156a0

    Article  CAS  Google Scholar 

  • Raij BV, Cantarella H, Quaggio JA, Furlani AMC (1997) Recomendações de adubação e calagem para o estado de São Paulo. Boletim Técnico 100:285

  • Raij B Van, Andrade JC de, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico de Campinas, Campinas

  • Ramalho B, Dieckow J, de Freitas MV, Gardner Brown G, Luzia Simon P, Alves Ibarr M, Cunha L, Kille P (2022) Carbon and nitrogen storage and stability by mineral-organic association in physical fractions of anthropogenic dark earth and of reference soils in Amazonia. Catena (amst) 213:106185. https://doi.org/10.1016/j.catena.2022.106185

    Article  CAS  Google Scholar 

  • Ray T, Malasiya D, Verma S, Kumar T, Khan ML (2023) Impact of forest fire frequency on tree biomass and carbon stocks in the tropical dry deciduous forest of Panna Tiger Reserve, Central India. Trop Ecol 64:337–351. https://doi.org/10.1007/s42965-022-00248-8

    Article  CAS  Google Scholar 

  • Reichenbach M, Fiener P, Hoyt A, Trumbore S, Six J, Doetterl S (2023) Soil carbon stocks in stable tropical landforms are dominated by geochemical controls and not by land use. Glob Chang Biol 29:2591–2607. https://doi.org/10.1111/gcb.16622

    Article  CAS  PubMed  Google Scholar 

  • Satdichanh M, Dossa GGO, Yan K, Tomlinson KW, Barton KE, Crow SE, Winowiecki L, Vågen T, Xu J, Harrison RD (2023) Drivers of soil organic carbon stock during tropical forest succession. J Ecol 111:1722–1734. https://doi.org/10.1111/1365-2745.14141

    Article  CAS  Google Scholar 

  • Silva AS, Silva I de F da, Bandeira LB, Dias B de O, Silva Neto L de F da (2014) Argila e matéria orgânica e seus efeitos na agregação em diferentes usos do solo. Ciência Rural 44:1783–1789https://doi.org/10.1590/0103-8478cr20130789

  • da Silva AKT, Guimarães JTF, Lemos VP, da Costa ML, Kern DC (2012) Mineralogia e geoquímica de perfis de solo com Terra Preta Arqueológica de Bom Jesus do Tocantins, sudeste da Amazônia. Acta Amazon 42:477–490. https://doi.org/10.1590/S0044-59672012000400005

    Article  Google Scholar 

  • Singh M, Sarkar B, Sarkar S, Churchman J, Bolan N, Mandal S, Menon M, Purakayastha TJ, Beerling DJ (2018) Stabilization of Soil Organic Carbon as Influenced by Clay Mineralogy. pp 33–84

  • de Souza ES, Fernandes AR, De Souza Braz AM, de Oliveira FJ, Alleoni LRF, Campos MCC (2018) Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil. SOIL 4:195–212. https://doi.org/10.5194/soil-4-195-2018

    Article  CAS  Google Scholar 

  • Tyopine AA, Obalum S, Igwe CA, Okoye COB (2022) Spatial distribution and relative enrichment of some upper-group trace elements in rhizosphere of highly anthropized and rapidly developing tropical environment. Intl J Environ Qual 49:19–33

    Google Scholar 

  • Tyopine AA, Sikakwe GU, Obalum SE, Okoye COB (2020) Relative distribution of rare-earth metals alongside alkaline earth and alkali metals in rhizosphere of agricultural soils in humid tropical environment. Environ Monit Assess 192:504. https://doi.org/10.1007/s10661-020-08437-5

    Article  CAS  PubMed  Google Scholar 

  • Uzoh I, Igwenagu C, Obalum SE (2020) Effect of different organic composts and inorganic fertilizer on nodulation, nitrogen fixation and grain yields of soybean (Glycine max L.) under field conditions. Nigerian Journal of Soil Science 30:63–69. https://doi.org/10.36265/njss.2020.300108

  • Vitorello VA, Cerri CC, Andreux F, Feller C, Victória RL (1989) Organic Matter and Natural Carbon-13 Distribution in Forested and Cultivated Oxisols. Soil Sci Soc Am J 53:773–778. https://doi.org/10.2136/sssaj1989.03615995005300030024x

    Article  CAS  Google Scholar 

  • Voltr V, Menšík L, Hlisnikovský L, Hruška M, Pokorný E, Pospíšilová L (2021) The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 11:779. https://doi.org/10.3390/agronomy11040779

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, Lützow M, Kögel-Knabner I (2012) Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Chang Biol 18:2233–2245. https://doi.org/10.1111/j.1365-2486.2012.02699.x

    Article  Google Scholar 

  • Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, Buegger F, Pouteau V, Chenu C, Mueller CW (2021) Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat Commun 12:4115. https://doi.org/10.1038/s41467-021-24192-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Huang G, Lin S, Huang Z, cheng H, Su Y, (2024) Changes in soil organic carbon stocks and its physical fractions along an elevation in a subtropical mountain forest. J Environ Manage 351:119823. https://doi.org/10.1016/j.jenvman.2023.119823

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu S, Yu J, Li J, Shangguan Z, Deng L (2024) Thinning increases forest ecosystem carbon stocks. For Ecol Manage 555:121702. https://doi.org/10.1016/j.foreco.2024.121702

    Article  Google Scholar 

  • Zinn YL, Resck DVS, Da Silva JE (2002) Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. For Ecol Manage 166:285–294. https://doi.org/10.1016/S0378-1127(01)00682-X

    Article  Google Scholar 

Download references

Acknowledgements

We thank to researchers Dirceu Maximino Fernandes (UNESP-FCA), Plínio Camargo (CENA-USP), Jamil Chaar El Husny, Sônia Botelho and Moacir Valente (EMBRAPA-CPATU) and José Raimundo Natividade Gama (UEMA) for assistance with measurements and technical support at analysis laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Garcia Costa.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Correspondence and requests for materials should be addressed to M.G.C. The experimental research was carried out in compliance with relevant institutional, national and international guidelines and legislation.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paes da Silva, R., de Souza Mateus, N., dos Santos, C.R.C. et al. Impact of Changes in Soil Attributes and Composition following Anthropization Related to Agricultural Practices in the Amazon Region. J Soil Sci Plant Nutr (2024). https://doi.org/10.1007/s42729-024-01716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42729-024-01716-x

Keywords

Navigation