Skip to main content
Log in

Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Root tissue density (RTD, the ratio of root dry mass to root volume) is a fundamental trait in comparative root ecology, being increasingly used as an indicator of plant species’ resource use strategy. However, the lack of standardized method to measure this trait makes comparisons tricky. This study aims to compare three methods commonly used for determining fine RTD and to test whether root dry matter content (RDMC, the ratio between root dry mass and root fresh mass) could be used as a surrogate of fine root tissue density.

Methods

RTD of 163 fine root samples was determined using (i) Archimedes’ method, (ii) image analysis (WinRHIZO software), and (iii) using the root dry matter content as a proxy. Root samples belonged to different herbaceous species grown in different conditions.

Results

RTD measured with Archimedes’ method was positively correlated with RTD estimated with image analysis and with RDMC. However we demonstrated that RTD measured with Archimedes’ method was better predicted by RDMC (R2 = 0.90) than by RTD measured with image analysis (R2 = 0.56). The performance and limitations of each method were discussed.

Conclusion

RDMC is a quick, cheap and relatively easy measurable root attribute; we thus recommended its measurement as a proxy of fine root tissue density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernard-Verdier M, Navas M-L, Vellend M, Violle C, Fayolle A, Garnier E (2012) Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in Mediterranean rangelands. J Ecol 100:1422–1433. doi:10.1111/1365-2745.12003

    Article  Google Scholar 

  • Birouste M, Kazakou E, Blanchard A, Roumet C (2012) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–472. doi:10.1093/aob/mcr297

    Article  PubMed  Google Scholar 

  • Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 185–196

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  • Cornelissen J, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Costa C, Dwyer LM, Hamel C, Muamba DF, Wang XL, Nantais L, Smith DL (2001) Root contrast enhancement for measurement with optical scanner-based image analysis. Can J Bot 79:23–29. doi:10.1139/cjb-79-1-23

    Google Scholar 

  • Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS III (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93:274–285. doi:10.1034/j.1600-0706.2001.930210.x

    Article  Google Scholar 

  • Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005) Evironmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86:12–19

    Article  Google Scholar 

  • Craine JM, Wedin DA, Chapin FS III, Reich PB (2002) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecol 165:85–100

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K et al (2004) The plant traits that drive ecosystems : evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Eissenstat DM (1991) On the relationship between specific root length and the rate of root proliferation : a field study using citrus rootstocks. New Phytol 118:63–68

    Article  Google Scholar 

  • Fortunel C, Fine PV, Baraloto C (2012) Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct Ecol. doi:10.1111/j.1365-2435.2012.02020.x

    Google Scholar 

  • Fortunel C, Garnier E, Joffre R et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611

    Article  PubMed  Google Scholar 

  • Garnier E (1992) Growth analysis of congeneric annual and perennial grass species. J Ecol 80:665–675

    Article  Google Scholar 

  • Garnier E, Salager J-L, Laurent G, Sonie L (1999) Relationships between photosynthesis, nitrogen and leaf structure in 14 grass species and their dependence on the basis of expression. New Phytol 143:119–129. doi:10.1046/j.1469-8137.1999.00426.x

    Article  Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695. doi:10.1046/j.0269-8463.2001.00563.x

    Article  Google Scholar 

  • Himmelbauer ML, Loiskandl W, Kastanek F (2004) Estimating length, average diameter and surface area of roots using two different Image analyses systems. Plant Soil 260:111–120. doi:10.1023/B:PLSO.0000030171.28821.55

    Article  CAS  Google Scholar 

  • Hodgson JG, Montserrat-Martí G, Charles M et al (2011) Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Ann Bot 108:1337–1345. doi:10.1093/aob/mcr225

    Article  CAS  PubMed  Google Scholar 

  • Hummel I, Vile D, Violle C et al (2007) Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol 173:313–321. doi:10.1111/j.1469-8137.2006.01912.x

    Article  PubMed  Google Scholar 

  • Iqbal A, Beaugrand J, Garnier P, Recous S (2012) Tissue density determines the water storage characteristics of crop residues. Plant Soil. doi:10.1007/s11104-012-1460-8

    Google Scholar 

  • Kazakou E, Violle C, Roumet C, Pintor C, Gimenez O, Garnier E (2009) Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Ann Bot 104:1151–1161. doi:10.1093/aob/mcp202

    Article  CAS  PubMed  Google Scholar 

  • Kembel SW, Cahill JF (2011) Independent evolution of leaf and root traits within and among temperate grassland plant communities. PloS one 6:e19992. doi:10.1371/journal.pone.0019992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, Nik AR (2012) Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree Physiol 32:303–312. doi:10.1093/treephys/tps008

    Article  PubMed  Google Scholar 

  • Ortiz-ribbing LM, Eastburn DM (2004) Soybean root systems and sudden death syndrome severity: taproot and lateral root infection. Plant Dis 88:1011–1016

    Google Scholar 

  • Pang W, Crow WT, Luc JE, Mcsorley R, Kenworthy KE (2011) Comparison of water displacement and WinRHIZO software for plant root parameter assessment. Plant Dis 95:1308–1310

    Article  Google Scholar 

  • Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012) Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327. doi:10.1111/1365-2745.12000

    Article  Google Scholar 

  • Picon-Cochard C, Pilon R, Tarroux E, Pagès L, Robertson J, Dawson L (2012) Effect of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 353:47–57. doi:10.1007/s11104-011-1007-4

    Article  CAS  Google Scholar 

  • Pierret A, Gonkhamdee S, Jourdan C, Maeght J-L (2013) IJ_Rhizo: an open-source software to measure scanned images of root samples. Plant Soil. doi:10.1007/s11104-013-1795-9

    Google Scholar 

  • Poorter H, Bergkotte M (1992) Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ 15:221–229

    Article  CAS  Google Scholar 

  • Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna. Available at http://www.r-project.org/

  • Régent Instruments Inc. (2003) WinRHIZO 2003b Basic, Reg & Pro for washed root measurement. 94

  • Richner W, Liedgens M, Bürgi H, Soldati A, Stamp P (2000) Root image analysis and interpretation. In: Smit AL (ed) Root methods: A handbook. Springer, Berlin, pp 306–341

    Google Scholar 

  • Roderick ML, Berry SL, Noble IR, Farquhar GD (1999a) A theoretical approach to linking the composition and morphology with the function of leaves. Funct Ecol 13:683–695

    Article  Google Scholar 

  • Roderick ML, Berry SL, Saunders AR, Noble IR (1999b) On the relationship between the composition, morphology and function of leaves. Funct Ecol 13:696–710. doi:10.1046/j.1365-2435.1999.00369.x

    Article  Google Scholar 

  • Roumet C, Picon-Cochard C, Dawson LA, Joffre R, Mayes R, Blanchard A, Brewer MJ (2006) Quantifying species composition in root mixtures using two methods: near-infrared reflectance spectroscopy and plant wax markers. New Phytol 170:631–638

    Article  CAS  PubMed  Google Scholar 

  • Ryser P (2006) The mysterious root length. Plant Soil 286:1–6. doi:10.1007/s11104-006-9096-1

    Article  CAS  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots : a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Ryser P, Gill HK, Byrne CJ (2011) Constraints of root response to waterlogging in Alisma triviale. Plant Soil 343:247–260. doi:10.1007/s11104-011-0715-0

    Article  CAS  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Sartorius (2001) Density determination kit: User’s manual. Sartorius AG, Goettingen. 72

  • Shipley B, Vu T-T (2002) Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol 153:359–364. doi:10.1046/j.0028-646X.2001.00320.x

    Article  Google Scholar 

  • Sims DA, Seemann JR, Luo Y (1998) Elevated CO2 concentration has independent effects on expansion rates and thickness of soybean leaves across light and nitrogen gradients. J Exp Bot 49:583–591. doi:10.1093/jxb/49.320.583

    CAS  Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459

    Article  PubMed  Google Scholar 

  • Tajima R, Kato Y (2011) Comparison of threshold algorithms for automatic image processing of rice roots using freeware ImageJ. Field Crops Res 121:460–463. doi:10.1016/j.fcr.2011.01.015

    Article  Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995. doi:10.2307/2258617

    Article  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508. doi:10.1111/j.1469-8137.2005.01428.x

    Article  CAS  PubMed  Google Scholar 

  • Useche A, Shipley B (2010) Plasticity in relative growth rate after a reduction in nitrogen availability is related to root morphological and physiological responses. Ann Bot 106:617–625. doi:10.1093/aob/mcq144

    Article  CAS  PubMed  Google Scholar 

  • Vile D, Garnier E, Shipley B et al (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136. doi:10.1093/aob/mci264

    Article  PubMed  Google Scholar 

  • Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471. doi:10.1046/j.1469-8137.2000.00775.x

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291. doi:10.1017/S1464793106007007

    Article  PubMed  Google Scholar 

  • Westoby M (1998) A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Williamson GB, Wiemann MC (2010) Measuring wood specific gravity…Correctly. Am J Bot 97:519–524. doi:10.3732/ajb.0900243

    Article  PubMed  Google Scholar 

  • Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

  • Wright IJ, Falster DS, Pickup M, Westoby M (2006) Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol Plant 127:445–456. doi:10.1111/j.1399-3054.2006.00699.x

    Article  CAS  Google Scholar 

  • Zobel RW (2003) Sensitivity analysis of computer-based diameter measurement from digital images. Crop Sci 43:583–591

    Article  Google Scholar 

  • Zobel RW (2013) Lolium perenne L. root systems are a collection of Gaussian curve shaped meso diameter class length distributions. Plant Soil 363:113–121. doi:10.1007/s11104-012-1298-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the « Plateforme des Terrains d’Expériences du LabEx CeMEB » and the « Plate-forme d’Analyses en Ecologie de la SFR Montpellier Environnement Biodiversité » for their assistance. We thank the experimental station “INRA-La Fage” for access to the facilities. We also thank Alain Blanchard, Jérémy Devaux, David Degueldre, Laura de Canet and Normaniza Osman for their help in collecting and processing root samples. We are grateful to François-Louis Busson for his valuable contribution on physical and mathematical aspects and to Ivan Prieto for his relevant comments and suggestions on the manuscript. We thank the editor, Hans Lambers and three anonymous reviewers for their fruitful comments, suggestions and advices which helped to greatly improve the manuscript. M.B. was supported by fellowships from the “Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME)” and the “Centre International d’études supérieures en sciences agronomiques (Montpellier SupAgro)”. The research was supported by the FRB RESPIRS CT 054045 grant, from the “Fondation de la Recherche sur la Biodiversité”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marine Birouste.

Additional information

Responsible Editor: Hans Lambers.

Marine Birouste, Ezequiel Zamora-Ledezma and Catherine Roumet contributed equally to this study

Appendices

Appendix 1

List of the 40 references consulted to review methods used to assess root tissue density. Most references were found using Web of Science (Thomson Reuters) with the following combinations of words ‘root tissue density’, ‘root dry matter content’, ‘root dry matter concentration’ or ‘root dry mass density’. The literature survey concerned only papers published between 2000 and 2012.

  1. 1.

    Aulen, M. & Shipley, B. (2012) Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species. Plant and Soil, 355, 41–49.

  2. 2.

    Brunner, I., Pannatier, E.G., Frey, B., Rigling, A., Landolt, W., Zimmermann, S. & Dobbertin, M. (2009) Morphological and physiological responses of Scots pine fine roots to water supply in a dry climatic region in Switzerland. Tree Physiology, 29, 541–550.

  3. 3.

    Building, T., Withington, J., Reich, P.B., Oleksyn, J. & Eissenstat, D.M. (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381–397.

  4. 4.

    Comas, L.H., Bouma, T.J. & Eissenstat, D.M. (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia, 132, 34–43.

  5. 5.

    Comas, L.H. & Eissenstat, D.M. (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388–397.

  6. 6.

    Comas, L.H. & Eissenstat, D.M. (2009) Patterns in root trait variation among 25 co-existing North American forest species. The New phytologist, 182, 919–28.

  7. 7.

    Craine, J.M., Froehle, J., Tilman, D.G., Wedin, D.A. & Chapin, F.S. (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos, 93, 274–285.

  8. 8.

    Craine, J.M. & Lee, W.G. (2003) Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471–8.

  9. 9.

    Craine, J.M., Tilman, D., Wedin, D., Reich, P., Tjoelker, M. & Knops, J. (2002a) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 16, 563–574.

  10. 10.

    Craine, J., Wedin, D., Chapin III, F. & Reich, P. (2002b) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecology, 165, 85–100.

  11. 11.

    Craine, J.M., Wedin, D.A., Chapin, F.S. & Reich, P.B. (2003) The dependence of root system properties on root system biomass of 10 North American grassland species. Plant and Soil, 250, 39–47.

  12. 12.

    Eissenstat, D.M., Wells, C.E., Yanai, R.D. & Whitbeck, J.L. (2000) Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33–42.

  13. 13.

    Hertel Dietrich, Köhler Lars, R.M. (2011) Mycorrhizal, endophytic and ecomorphological status of tree roots in the canopy of a montane rain forest. Biotropica, 43, 401–404.

  14. 14.

    Hill, J.O., Simpson, R.J., Moore, A.D. & Chapman, D.F. (2006) Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant and Soil, 286, 7–19.

  15. 15.

    Holdaway, R.J., Richardson, S.J., Dickie, I.A., Peltzer, D.A. & Coomes, D.A. (2011) Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954–963.

  16. 16.

    Hummel, I., Vile, D., Violle, C., Devaux, J., Ricci, B., Blanchard, A., Garnier, E. & Roumet, C. (2007) Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. The New phytologist, 173, 313–21.

  17. 17.

    Di Iorio, A., Montagnoli, A., Scippa, G.S. & Chiatante, D. (2011) Fine root growth of Quercus pubescens seedlings after drought stress and fire disturbance. Environmental and Experimental Botany, 74, 272–279.

  18. 18.

    Iversen, C.M., Ledford, J. & Norby, R.J. (2008) CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. The New phytologist, 179, 837–47.

  19. 19.

    Jagodzinski, A. & Kałucka, I. (2011) Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology, 66, 71–84.

  20. 20.

    Makita, N., Kosugi, Y., Dannoura, M., Takanashi, S., Niiyama, K., Kassim, A.R. & Nik, A.R. (2012) Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree physiology, 32, 303–12.

  21. 21.

    Mokany, K. & Ash, J. (2008) Are traits measured on pot grown plants representative of those in natural communities? Journal of Vegetation Science, 19, 119–126.

  22. 22.

    Noguchi, K., Han, Q., Araki, M.G., Kawasaki, T., Kaneko, S., Takahashi, M. & Chiba, Y. (2010) Fine-root dynamics in a young hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning. Journal of Forest Research, 16, 284–291.

  23. 23.

    Ostonen, I., Helmisaari, H.-S., Borken, W., Tedersoo, L., Kukumägi, M., Bahram, M., Lindroos, A.-J., Nöjd, P., Uri, V., Merilä, P., Asi, E. & Lõhmus, K. (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology, 17, 3620–3632.

  24. 24.

    Ostonen, I., Lõhmus, K., Helmisaari, H.-S., Truu, J. & Meel, S. (2007a) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree physiology, 27, 1627–34.

  25. 25.

    Ostonen, I., Püttsepp, Ü., Biel, C., Alberton, O., Bakker, M., Lohmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A., Pronk, A., Vanguelova, E., M, W. & Brunner, I. (2007b) Specific root length as an indicator of environmental change. Plant Biosystems, 141, 426–442.

  26. 26.

    Ostonen, I., Tedersoo, L., Suvi, T. & Lõhmus, K. (2009) Does a fungal species drive ectomycorrhizal root traits in Alnus spp.? Canadian Journal of Forest Research, 39, 1787–1796.

  27. 27.

    Paula, S. & Pausas, J.G. (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia, 165, 321–31.

  28. 28.

    Poot, P. & Lambers, H. (2003) Are trade-offs in allocation pattern and root morphology related to species abundance? A congeneric comparison between rare and common species in the south-western Australian flora. Journal of Ecology, 91, 58–67.

  29. 29.

    Roumet, C., Lafont, F., Sari, M., Warembourg, F. & Garnier, E. (2008) Root traits and taxonomic affiliation of nine herbaceous species grown in glasshouse conditions. Plant and Soil, 312, 69–83.

  30. 30.

    Roumet, C., Urcelay, C. & Díaz, S. (2006) Suites of root traits differ between annual and perennial species growing in the field. The New phytologist, 170, 357–68.

  31. 31.

    Ryser, P. & Eek, L. (2000) Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. American journal of botany, 87, 402–411.

  32. 32.

    Ryser, P. & Emerson, P. (2007) Growth, root and leaf structure, and biomass allocation in Leucanthemum vulgare Lam. (Asteraceae) as influenced by heavy-metal-containing slag. Plant and Soil, 301, 315–324.

  33. 33.

    Ryser, P., Gill, H.K. & Byrne, C.J. (2011) Constraints of root response to waterlogging in Alisma triviale. Plant and Soil, 343, 247–260.

  34. 34.

    Shipley, B. & Vu, T.-T. (2002) Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153, 359–364.

  35. 35.

    Smith, J.P. & Schowalter, T.D. (2001) Aphid-induced reduction of shoot and root growth in Douglas-fir seedlings. Ecological Entomology, 26, 411–416.

  36. 36.

    Stattin, E., Hellqvist, C. & Lindström, A. (2000) Storability and root freezing tolerance of Norway spruce (Picea abies) seedlings. Canadian Journal of Forest Research, 30, 964–970.

  37. 37.

    Useche, A. & Shipley, B. (2010) Plasticity in relative growth rate after a reduction in nitrogen availability is related to root morphological and physiological responses. Annals of botany, 106, 617–25.

  38. 38.

    Valenzuela-Estrada, L.R., Vera-Caraballo, V., Ruth, L.E. & Eissenstat, D.M. (2008) Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American journal of botany, 95, 1506–14.

  39. 39.

    Wahl, S. (2001) Phenotypic plasticity of grass root anatomy in response to light intensity and nutrient supply. Annals of Botany, 88, 1071–1078.

  40. 40.

    Wahl, S. & Ryser, P. (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148, 459–471.

Appendix 2

Table 2 List of plant species or communities used to take measurements of root volume and tissue density

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birouste, M., Zamora-Ledezma, E., Bossard, C. et al. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content. Plant Soil 374, 299–313 (2014). https://doi.org/10.1007/s11104-013-1874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1874-y

Keywords

Navigation