Skip to main content
Log in

Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Copper (Cu) is an essential micronutrient required for growth and development of plants. However, excess Cu is toxic to plants. To understand the mechanisms involved in copper stress response, a proteomic approach was used to investigate the differences in Cu stress-induced protein expression between a Cu-tolerant variety (B1139) and a Cu-sensitive one (B1195) of rice.

Methods

Rice seedlings were exposed to 8 μM Cu for 3 days, with plants grown in the normal nutrient solution containing 0.32 μM Cu serving as the control. Proteins were extracted from the roots and separated by two-dimensional PAGE. Thirty four proteins were identified using MALDI-TOF mass spectrometry.

Results

Thirty-four protein spots were found to be differently expressed in the Cu-stressed roots in at least one variety of rice, including those involved in antioxidative defense, redox regulation, stress response, sulfur and glutathione (GSH) metabolism, carbohydrate metabolism, signal transduction, and some other proteins with various functions. Nine proteins, including putative cysteine synthase, probable serine acetyltransferase 3, L-ascorbate peroxidase 1, putative glutathione S-transferase 2, and thioredoxin-like 3-3, exhibited a greater increase in response to Cu stress in the Cu-tolerant variety B1139 compared with the Cu–sensitive variety B1195.

Conclusion

The majority of the proteins showing differential expression in response to Cu exposure are involved in the redox regulation, and sulfur and GSH metabolism, suggesting that these proteins, together with antioxidant enzymes, play an important role in the detoxification of excess Cu and maintaining cellular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007a) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007b) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621

    Article  PubMed  CAS  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Akhtar TA, Lampi MA, Greenberg BM (2005) Identification of six differentially expressed genes in response to copper exposure in the aquatic plant Lemna gibba (duckweed). Environ Toxicol Chem 24:1705–1715

    Article  PubMed  CAS  Google Scholar 

  • Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7:1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Cuypers A, Koistinen KM, Kokko H, Kärenlampi S, Auriola S, Vangronsveld J (2005) Analysis of bean (Phaseolus vulgaris L.) proteins affected by copper stress. J Plant Physiol 162:383–392

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos CV, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–334

    Article  Google Scholar 

  • Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean roots under aluminum stress. Int J Plant Genomics 2011.

  • Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  PubMed  CAS  Google Scholar 

  • Gillet S, Decottignies P, Chardonnet S, Le Marechal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynthesis Res 89:201–211

    Article  CAS  Google Scholar 

  • Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183:62–75

    Article  PubMed  CAS  Google Scholar 

  • Guo YS, Huang CJ, Xie Y, Song FM, Zhou XP (2010) A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta 232:1499–1509

    Article  PubMed  CAS  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Hall TMT (2005) Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15:367–373

    Article  PubMed  CAS  Google Scholar 

  • Jwa NS, Agrawal GK, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R (2006) Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol Biochem 44:261–273

    Article  PubMed  CAS  Google Scholar 

  • Kim YB, Garbisu C, Pickering IJ, Prince RC, George GN, Cho MJ, Wong JH, Buchanan BB (2003) Thioredoxin h overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development. Planta 218:186–191

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Kobrehel K, Szalai G, Duviau MP, Buzas Z, Galiba G (2004) Abiotic stress-induced changes in glutathione and thioredoxin h levels in maize. Environ Exp Bot 52:101–112

    Article  CAS  Google Scholar 

  • Koistinen KM, Hassinen VH, Gynther PAM, Lehesranta SJ, Keinanen SI, Kokko HI, Oksanen EJ, Tervahauta AI, Auriola S, Karenlampi SO (2002) Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents. New Phytol 155:381–391

    Article  CAS  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62:1234–1244

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Shin KH, Kim YK, Suh JY, Gu YY, Kim MR, Hur YS, Son O, Kim JS, Song E, Lee MS, Nam KH, Sung MK, Kim HJ, Chun JY, Park M, Ahn TI, Hong CB, Lee SH, Park HJ, Park JS, Verma DPS, Cheon CI (2005) Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol 139:1881–1889

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  PubMed  CAS  Google Scholar 

  • Lee DG, Park KW, An JY, Sohn YG, Ha JK, Kim HY, Bae DW, Lee KH, Kang NJ, Lee BH, Kang KY, Lee JJ (2011) Proteomics analysis of salt-induced leaf proteins in two rice germplasms with different salt sensitivity. Can J Plant Sci 91:337–349

    Article  CAS  Google Scholar 

  • Li QY, Niu HB, Yin J, Shao HB, Niu JS, Ren JP, Li YC, Wang X (2010) Transgenic barley with overexpressed PTrx increases aluminum resistance in roots during germination. J Zhejiang Univ-Sci B 11:862–870

    Article  CAS  Google Scholar 

  • Liu DL, Zhang XX, Cheng YX, Takano T, Liu SK (2006) rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem 44:380–386

    Article  PubMed  CAS  Google Scholar 

  • Liu HY, Zhang HS, Wang GP, Shen ZG (2008) Identification of rice varieties with high tolerance or sensitivity to copper. J Plant Nutr 31:121–136

    Article  CAS  Google Scholar 

  • Liu DH, Xue P, Meng QM, Zou J, Gu JG, Jiang WS (2009a) Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L. Plant Cell Rep 28:695–702

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Liu SY, Guan H, Ma LG, Chen ZL, Gu HY, Qu LJ (2009b) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67:377–386

    Article  CAS  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Agrawal GK, Yonekura M (1999) Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: Induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20:3472–3478

    Article  PubMed  CAS  Google Scholar 

  • Ramagli LS (1999) In: Link AJ (ed) 2-D proteome analysis protocols. Humana press, Totowa, pp 99–103

    Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Ritter A, Ubertini M, Romac S, Gaillard F, Delage L, Mann A, Cock JM, Tonon T, Correa JA, Potin P (2010) Copper stress proteomics highlights local adaptation of two strains of the model brown alga Ectocarpus siliculosus. Proteomics 10:2074–2088

    Article  PubMed  CAS  Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  PubMed  CAS  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene L (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    Article  PubMed  CAS  Google Scholar 

  • Shan L, Li CL, Chen F, Zhao SY, Xia GM (2008) A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ 31:1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Shitan N, Horiuchi K, Sato F, Yazaki K (2007) Bowman-birk proteinase inhibitor confers heavy metal and multiple drug tolerance in yeast. Plant Cell Physiol 48:193–197

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  PubMed  CAS  Google Scholar 

  • Smith AP, DeRidder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098–26104

    Article  PubMed  CAS  Google Scholar 

  • Song YF, Zhang HX, Wang GP, Shen ZG (2012) DMSO, an organic cleanup solvent for TCA/acetone-precipitated proteins, improves 2-DE protein analysis of rice roots. Plant Mol Biol Rep 30:1204–1209

    Google Scholar 

  • Srivastava S, Fristensky B, Kav NNV (2004) Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol 45:1320–1324

    Article  PubMed  CAS  Google Scholar 

  • Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot 59:3465–3474

    Article  PubMed  CAS  Google Scholar 

  • Sundaram S, Rathinasabapathi B (2010) Transgenic expression of fern Pteris vittata glutaredoxin PvGrx5 in Arabidopsis thaliana increases plant tolerance to high temperature stress and reduces oxidative damage to proteins. Planta 231:361–369

    Article  PubMed  CAS  Google Scholar 

  • Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858

    Article  PubMed  CAS  Google Scholar 

  • Tang SS, Lin CC, Chang GG (1996) Metal-catalyzed oxidation and cleavage of octopus glutathione transferase by the Cu(II)-ascorbate system. Free Radical Biol Med 21:955–964

    Article  CAS  Google Scholar 

  • Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci 8:231–237

    Article  PubMed  CAS  Google Scholar 

  • Tuomainen M, Tervahauta A, Hassinen V, Schat H, Koistinen KM, Lehesranta S, Rantalainen K, Hayrinen J, Auriola S, Anttonen M, Karenlampi S (2010) Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. J Exp Bot 61:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Tuomainen M, Ahonen V, Karenlampi SO, Schat H, Paasela T, Svanys A, Tuohimetsa S, Peraniemi S, Tervahauta A (2011) Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens. Planta 233:1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Utriainen M, Kokko H, Auriola S, Sarrazin O, Karenlampi S (1998) PR-10 protein is induced by copper stress in roots and leaves of a Cu/Zn tolerant clone of birch, Betula pendula. Plant Cell Environ 21:821–828

    Article  CAS  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  PubMed  CAS  Google Scholar 

  • Wu XC, Fang CX, Chen JY, Wang QS, Chen T, Lin WX, Huang ZL (2011) A proteomic analysis of leaf responses to enhanced ultraviolet-B radiation in two rice (Oryza sativa L.) cultivars differing in UV sensitivity. J Plant Biol 54:251–261

    Article  CAS  Google Scholar 

  • Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672

    Article  PubMed  CAS  Google Scholar 

  • Yang GX, Inoue A, Takasaki H, Kaku H, Akao S, Komatsu S (2005) A proteomic approach to analyze auxin- and zinc-responsive protein in rice. J Proteome Res 4:456–463

    Article  PubMed  CAS  Google Scholar 

  • Yang QS, Wang YQ, Zhang JJ, Shi WP, Qian CM, Peng XX (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: Cysteine synthase as a key player in Al response. Proteomics 7:737–749

    Article  PubMed  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Yuan JS, Yang XH, Lai JR, Lin H, Cheng ZM, Nonogaki H, Chen F (2007) The endo-beta-mannanase gene families in Arabidopsis, rice, and poplar. Funct Integr Genomics 7:1–16

    Article  PubMed  CAS  Google Scholar 

  • Zang X, Komatsu S (2007) A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68:426–437

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Lian CL, Shen ZG (2009a) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 103:923–930

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009b) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151:1889–1901

    Article  PubMed  CAS  Google Scholar 

  • Zhao CR, Ikka T, Sawaki Y, Kobayashi Y, Suzuki Y, Hibino T, Sato S, Sakurai N, Shibata D, Koyama H (2009) Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biol 9:32

    Article  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30471036), the Fundamental Research Funds for the Central Universities (KYT201001), the grant from the Education Department of Jiangsu (200910) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Shen.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Cui, J., Zhang, H. et al. Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366, 647–658 (2013). https://doi.org/10.1007/s11104-012-1458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1458-2

Keywords

Navigation