Skip to main content
Log in

Phytohormone biosynthesis and signaling pathways of mosses

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens.

Abstract

The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel WO, Knebel W, Koop H-U, Marienfeld JR, Quader H, Reski R, Schnepf E, Spörlein B (1989) A cytokinin-sensitive mutant of the moss, Physcomitrella patens, defective in chloroplast division. Protoplasma 152:1–13

    Article  Google Scholar 

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, Shinozawa A, Sugiyama N, Ishihama Y, Takezawa D, Sakata Y, Shinozaki K, Umezawa T (2018) Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens. Plant J 94:699–708

    Article  CAS  PubMed  Google Scholar 

  • Anterola A, Göbel C, Hornung E, Sellhorn G, Feussner I, Grimes H (2009a) Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways. Phytochemistry 70:40–52

    Article  CAS  PubMed  Google Scholar 

  • Anterola A, Shanle E, Mansouri K, Schuette S, Renzaglia K (2009b) Gibberellin precursor is involved in spore germination in the moss Physcomitrella patens. Planta 229:1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M (2012) AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development 139:3120–3129

    Article  CAS  PubMed  Google Scholar 

  • Arif MA, Hiss M, Tomek M, Busch H, Meyberg R, Tintelnot S, Reski R, Rensing SA, Frank W (2019) ABA-induced vegetative diaspore formation in Physcomitrella patens. Front Plant Sci 10:1–18

    Article  Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  • Ashton NW, Cove DJ, Featherstone DR (1979a) The isolation and physiological analysis of mutants of the moss, Physcomitrella patens, which over-produce gametophores. Planta 144:437–442

    Article  CAS  PubMed  Google Scholar 

  • Ashton NW, Grimsley NH, Cove DJ (1979b) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144:427–435

    Article  CAS  PubMed  Google Scholar 

  • Asprey GF, Benson-Evans K, Lyon AG (1958) Effect of gibberellin and lndoleacetic acid on seta elongation in Pellia epiphylla. Nature 181:1351

    Article  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandara PKGSS, Takahashi K, Sato M, Matsuura H, Nabeta K (2009) Cloning and functional analysis of an allene oxide synthase in Physcomitrella patens. Biosci Biotechnol Biochem 73:2356–2359

    Article  CAS  PubMed  Google Scholar 

  • Bennett TA et al (2014) Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol 24:2776–2785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blázquez MA, Nelson DC, Weijers D (2020) Evolution of plant hormone response pathways. Annu Rev Plant Biol 71:327–353

    Article  PubMed  Google Scholar 

  • Bopp M (1968) Control of differentiation in fern-allies and bryophytes. Annu Rev Plant Physiol 19:361–380

    Article  Google Scholar 

  • Bopp M, Werner O (1993) Abscisic acid and desiccation tolerance in mosses. Bot Acta 106:103–106

    Article  CAS  Google Scholar 

  • Bowman JL et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287-304.e15

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Briginshaw LN, Fisher TJ, Flores-Sandoval E (2019) Something ancient and something neofunctionalized—evolution of land plant hormone signaling pathways. Curr Opin Plant Biol 47:64–72

    Article  CAS  PubMed  Google Scholar 

  • Brandes H, Kende H (1968) Studies on cytokinin-controlled bud formation in moss Protonemata. Plant Physiol 43:827–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breithaupt C, Kurzbauer R, Schaller F, Stintzi A, Schaller A, Huber R, Macheroux P, Clausen T (2009) Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. J Mol Biol 392:1266–1277

    Article  CAS  PubMed  Google Scholar 

  • Bressendorff S, Azevedo R, Kenchappa CS, Ponce de León I, Olsen JV, Rasmussen MW, Erbs G, Newman MA, Petersen M, Mundy J (2016) An innate immunity pathway in the moss Physcomitrella patens. Plant Cell 28:1328–1342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briones-Moreno A, Hernández-García J, Vargas-Chávez C, Romero-Campero FJ, Romero JM, Valverde F, Blázquez MA (2017) Evolutionary analysis of DELLA-associated transcriptional networks. Front Plant Sci 8:1–11

    Article  Google Scholar 

  • Bürger M, Mashiguchi K, Lee HJ, Nakano M, Takemoto K, Seto Y, Yamaguchi S, Chory J (2019) Structural basis of karrikin and non-natural strigolactone perception in Physcomitrella patens. Cell Rep 26:855-865.e5

    Article  PubMed Central  PubMed  Google Scholar 

  • Bythell-Douglas R, Rothfels CJ, Stevenson DWD, Graham SW, Wong GK-S, Nelson DC, Bennett T (2017) Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol 15:52

    Article  PubMed Central  PubMed  Google Scholar 

  • Cammarata J, Roeder AH, Scanlon MJ (2019) Cytokinin and CLE signaling are highly intertwined developmental regulators across tissues and species. Curr Opin Plant Biol 51:96–104

    Article  CAS  PubMed  Google Scholar 

  • Cannell N, Emms DM, Hetherington AJ, MacKay J, Kelly S, Dolan L, Sweetlove LJ (2020) Multiple metabolic innovations and losses are associated with major transitions in land plant evolution. Curr Biol 30:1783–1800

    Article  CAS  PubMed  Google Scholar 

  • Causier B, Lloyd J, Stevens L, Davies B (2012) TOPLESS co-repressor interactions and their evolutionary conservation in plants. Plant Signal Behav 7:1–4

    Article  Google Scholar 

  • Chang KN et al (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2013:1–20

    Google Scholar 

  • Chater C, Kamisugi Y, Movahedi M, Fleming A, Cuming AC, Gray JE, Beerling DJ (2011) Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Curr Biol 21:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Cheon J, Fujioka S, Dilkes BP, Choe S (2013) Brassinosteroids regulate plant growth through distinct signaling pathways in Selaginella and Arabidopsis. PLoS ONE 8:e81938

    Article  PubMed Central  PubMed  Google Scholar 

  • Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11:486–494

    Article  CAS  PubMed  Google Scholar 

  • Chopra RN, Gupta U (1967) Dark-induction of buds in Funaria hygrometrica Hedw. Bryologist 70:102–104

    Article  Google Scholar 

  • Christianson ML (1998) The quantitative response to cytokinin in the moss Funaria hygrometrica does not reflect differential sensitivity of initial target cells. Am J Bot 85:144–148

    Article  CAS  PubMed  Google Scholar 

  • Christianson ML (2000) ABA prevents the second cytokinin-mediated event during the induction of shoot buds in the moss Funaria hygrometrica. Am J Bot 87:1540–1545

    Article  CAS  PubMed  Google Scholar 

  • Christianson ML, Duffy SH (2002) Dose-dependent effect of salicylates in a moss, Funaria Hygrometrica. J Plant Growth Regul 21:200–208

    Article  CAS  Google Scholar 

  • Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338

    Article  CAS  PubMed  Google Scholar 

  • Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ (2015) Three ancient hormonal cues co-ordinate shoot branching in a moss. Elife 4:1–26

    Article  Google Scholar 

  • Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  CAS  PubMed  Google Scholar 

  • Cuming AC (2019) Evolution of ABA signaling pathways. Adv Bot Res 92:281–313

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Davidson SE, Reid JB, Helliwell CA (2006) Cytochromes P450 in gibberellin biosynthesis. Phytochem Rev 5:405–419

    Article  CAS  Google Scholar 

  • Daviere J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • de Vries S, de Vries J, von Dahlen JK, Gould SB, Archibald JM, Rose LE, Slamovits CH (2018) On plant defense signaling networks and early land plant evolution. Commun Integr Biol 11:1–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Decker EL, Frank W, Sarnighausen E, Reski R (2006) Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol 8:397–406

    Article  CAS  PubMed  Google Scholar 

  • Decker EL et al (2017) Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol 216:455–468

    Article  CAS  PubMed  Google Scholar 

  • Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y (2018) Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454–1467

    Article  CAS  PubMed  Google Scholar 

  • Doonan JH, Cove DJ, Corke FMK, Lloyd CW (1987) Pre-prophase band of microtubules, absent from tip-growing moss filaments, arises in leafy shoots during transition to intercalary growth. Cell Motil Cytoskeleton 7:138–153

    Article  Google Scholar 

  • Drábková LZ, Dobrev PI, Motyka V (2015) Phytohormone profiling across the bryophytes. PLoS ONE 10:1–19

    Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eklund DM, Thelander M, Landberg K, Ståldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ERA, Kowalczyk M, Ljung K, Ronne H, Sundberg E (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284

    Article  CAS  PubMed  Google Scholar 

  • Engel PP (1968) The induction of biochemical and morphological mutants in the moss Physcomitrella patens. Am J Bot 55:438–446

    Article  CAS  Google Scholar 

  • Fesenko I et al (2019) Phytohormone treatment induces generation of cryptic peptides with antimicrobial activity in the moss Physcomitrella patens. BMC Plant Biol 19:1–16

    Article  Google Scholar 

  • Filippova A, Lyapina I, Kirov I, Zgoda V, Belogurov A, Kudriaeva A, Ivanov V, Fesenko I (2019) Salicylic acid influences the protease activity and posttranslation modifications of the secreted peptides in the moss physcomitrella patens. J Pept Sci 25:1–11

    Article  Google Scholar 

  • Finet C, Jaillais Y (2012) Auxology: when auxin meets plant evo-devo. Dev Biol 369:19–31

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arab B 11:e0166

    Article  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JC (2020) Recent advances in arabidopsis CLE peptide signaling. Trends Plant Sci 25:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  PubMed  Google Scholar 

  • Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M (2008) Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 10:176–186

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani S (2014) Signaling peptides in plants. Cell Dev Biol 03:98–101

    Article  Google Scholar 

  • Goad DM, Zhu C, Kellogg EA (2017) Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol 216:605–616

    Article  CAS  PubMed  Google Scholar 

  • Goode JA, Alfano F, Stead AD, Duckett JG (1993a) The formation of aplastidic abscission (tmema) cells and protonemal disruption in the moss Bryum tenuisetum Limpr. is associated with transverse arrays of microtubules and microfilaments. Protoplasma 174:158–172

    Article  Google Scholar 

  • Goode JA, Stead AD, Duckett JG (1993b) Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Can J Bot 71:1510–1519

    Article  Google Scholar 

  • Gorton BS, Eakin RE (1957) Development of the gametophyte in the moss Tortella caespitosa. Bot Gaz 119:31–38

    Article  CAS  Google Scholar 

  • Gruhn N, Heyl A (2013) Updates on the model and the evolution of cytokinin signaling. Curr Opin Plant Biol 16:569–574

    Article  CAS  PubMed  Google Scholar 

  • Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A (2014) A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. Plant Physiol 165:227–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu R, Fu J, Guo S, Duan F, Wang Z, Mi G, Yuan L (2010) Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase (CKX) gene family. J Plant Growth Regul 29:428–440

    Article  CAS  Google Scholar 

  • Han GZ (2017) Evolution of jasmonate biosynthesis and signalling mechanisms. J Exp Bot 68:1323–1331

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Takahashi K, Sato M, Bandara PKGSS, Nabeta K (2011) Cloning and characterization of an allene oxide cyclase, PpAOC3, in Physcomitrella patens. Plant Growth Regul 65:239–245

    Article  CAS  Google Scholar 

  • Hayashi K, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580:6175–6181

    Article  CAS  PubMed  Google Scholar 

  • Hayashi KI, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander LN, Yamane H, Hasebe M, Nozaki H (2010) Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol 153:1085–1097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2001) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:319–331

    Article  CAS  PubMed  Google Scholar 

  • Hernández-García J, Briones-Moreno A, Dumas R, Blázquez MA (2019) Origin of Gibberellin-dependent transcriptional regulation by molecular exploitation of a transactivation domain in DELLA proteins. Mol Biol Evol 36:908–918

    Article  PubMed  Google Scholar 

  • Hirano K et al (2007) The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell 19:3058–3079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann B, Proust H, Belcram K, Labrune C, Boyer FD, Rameau C, Bonhomme S (2014) Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens. PLoS ONE 9:1–10

    Article  Google Scholar 

  • Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Hyoung S, Cho SH, Chung JH, So WM, Cui MH, Shin JS (2020) Cytokinin oxidase PpCKX1 plays regulatory roles in development and enhances dehydration and salt tolerance in Physcomitrella patens. Plant Cell Rep 39:419–430

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Kadota A, Hasebe M, Wada M (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14:373–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 08:1–19

    Article  Google Scholar 

  • Ishida K, Yamashino T, Nakanishi H, Mizuno T (2010) Classification of the genes involved in the two-component system of the moss Physcomitrella patens. Biosci Biotechnol Biochem 74:2542–2545

    Article  CAS  PubMed  Google Scholar 

  • Jahan A, Komatsu K, Wakida-Sekiya M, Hiraide M, Tanaka K, Ohtake R, Umezawa T, Toriyama T, Shinozawa A, Yotsui I, Sakata Y, Takezawa D (2019) Archetypal roles of an abscisic acid receptor in drought and sugar responses in liverworts. Plant Physiol 179:317–328

    Article  CAS  PubMed  Google Scholar 

  • Jang G, Dolan L (2011) Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens. New Phytol 192:319–327

    Article  CAS  PubMed  Google Scholar 

  • Johri MM, Desai S (1973) Auxin regulation of caulonema formation in moss protonema. Nat New Biol 245:223–224

    Article  CAS  PubMed  Google Scholar 

  • Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1:14004

    Article  CAS  PubMed  Google Scholar 

  • Kamisugi Y, Cuming AC (2005) The evolution of the abscisic acid-response in land plants: comparative analysis of group 1 LEA gene expression in moss and cereals. Plant Mol Biol 59:723–737

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Nishihama R, Weijers D, Kohchi T (2017) Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. J Exp Bot 69:1–11

    Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Development 145:149344

    Article  Google Scholar 

  • Komatsu K, Nishikawa Y, Ohtsuka T, Taji T, Quatrano RS, Tanaka S, Sakata Y (2009) Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens. Plant Mol Biol 70:327–340

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Suzuki N, Kuwamura M, Nishikawa Y, Nakatani M, Ohtawa H, Takezawa D, Seki M, Tanaka M, Taji T, Hayashi T, Sakata Y (2013) Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nat Commun 4:1–7

    Article  Google Scholar 

  • Kwiatkowska M, Wojtczak A, Popłońska K (1998) Effect of GA3 treatment on the number of spermatozoids and endopolyploidy levels of non-generative cells in antheridia of Chara vulgaris L. Plant Cell Physiol 39:1388–1390

    Article  CAS  Google Scholar 

  • Landberg K, Pederson ERA, Viaene T, Bozorg B, Friml J, Jönsson H, Thelander M, Sundberg E (2013) The moss Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Plant Physiol 162:1406–1419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavy M, Prigge MJ, Tao S, Shain S, Kuo A, Kirchsteiger K, Estelle M (2016) Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. Elife 5:1–21

    Article  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:1–7

    Article  Google Scholar 

  • Li W, Liu B, Yu L, Feng D, Wang H, Wang J (2009) Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol 9:1–19

    Article  CAS  Google Scholar 

  • Li Z, Shen J, Liang J (2019) Genome-Wide identification, expression profile, and alternative splicing analysis of the brassinosteroid-signaling kinase (BSK) family genes in Arabidopsis. Int J Mol Sci 20:1138

    Article  CAS  PubMed Central  Google Scholar 

  • Li D, Flores-Sandoval E, Ahtesham U, Coleman A, Clay JM, Bowman JL, Chang C (2020a) Ethylene-independent functions of the ethylene precursor ACC in Marchantia polymorpha. Nat Plants 6:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Li F-W et al (2020b) Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat Plants 6:259–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Obando M, Hoffmann B, Gery C, Guyon-Debast A, Teoule E, Rameau C, Bonhomme S, Nogue F (2016) Simple and efficient targeting of multiple genes through CRISPR-Cas9 in Physcomitrella patens. G3 Genes Genomes Genet 6:3647–3653

    CAS  Google Scholar 

  • Lopez-Obando M, de Villiers R, Hoffmann B, Ma L, de Saint Germain A, Kossmann J, Coudert Y, Harrison CJ, Rameau C, Hills P, Bonhomme S (2018) Physcomitrella patens MAX2 characterization suggests an ancient role for this F-box protein in photomorphogenesis rather than strigolactone signalling. New Phytol 219:743–756

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R (2009) Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol 181:323–338

    Article  PubMed  Google Scholar 

  • Luo W, Nanjo Y, Komatsu S, Matsuura H, Takahashi K (2016) Proteomics of Physcomitrella patens protonemata subjected to treatment with 12-oxo-phytodienoic acid. Biosci Biotechnol Biochem 80:2357–2364

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Komatsu S, Abe T, Matsuura H, Takahashi K (2020) Comparative proteomic analysis of wild-type Physcomitrella patens and an OPDA-deficient Physcomitrella patens mutant with disrupted PpAOS1 and PpAOS2 genes after wounding. Int J Mol Sci 21:1417

    Article  CAS  PubMed Central  Google Scholar 

  • Mallett DR, Chang M, Cheng X, Bezanilla M (2019) Efficient and modular CRISPR-Cas9 vector system for Physcomitrella patens. Plant Direct 3:1–15

    Article  Google Scholar 

  • Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46:1032–1044

    Article  CAS  PubMed  Google Scholar 

  • Martin-Arevalillo R, Thévenon E, Jégu F, Vinos-Poyo T, Vernoux T, Parcy F, Dumas R (2019) Evolution of the auxin response factors from charophyte ancestors. PLoS Genet 15:e1008400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui H, Iwakawa H, Hyon G-S, Yotsui I, Katou S, Monte I, Nishihama R, Franzen R, Solano R, Nakagami H (2020) Isolation of natural fungal pathogens from Marchantia polymorpha reveals antagonism between salicylic acid and jasmonate during liverwort–fungus interactions. Plant Cell Physiol 61:265–275

    Article  CAS  PubMed  Google Scholar 

  • Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2003) Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol 160:475–483

    Article  CAS  PubMed  Google Scholar 

  • Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2006) Physiological and morphological alterations associated with development of freezing tolerance in the moss Physcomitrella patens. In: Chen T (ed) Cold hardiness in plants: molecular genetics, cell biology and physiology. CABI, Cambridge, pp 138–152

    Google Scholar 

  • Mishra S, Upadhyay S, Shukla RK (2017) The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Front Physiol 7:1–7

    Article  Google Scholar 

  • Miyazaki S, Toyoshima H, Natsume M, Nakajima M, Kawaide H (2014) Blue-light irradiation up-regulates the ent-kaurene synthase gene and affects the avoidance response of protonemal growth in Physcomitrella patens. Planta 240:117–124

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S, Nakajima M, Kawaide H (2015) Hormonal diterpenoids derived from ent-kaurenoic acid are involved in the blue-light avoidance response of Physcomitrella patens. Plant Signal Behav 10:e989046

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyazaki S, Hara M, Ito S, Tanaka K, Asami T et al (2018) An ancestral gibberellin in a moss Physcomitrella patens. Mol Plant 11:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Modlin IM, Kidd M, Farhadi J (2000) Bayliss and Starling and the nascence of endocrinology. Regul Pept 93:109–123

    Article  CAS  PubMed  Google Scholar 

  • Monte I et al (2018) Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol 14:480–488

    Article  CAS  PubMed  Google Scholar 

  • Moody LA, Saidi Y, Gibbs DJ, Choudhary A, Holloway D, Vesty EF, Bansal KK, Bradshaw SJ, Coates JC (2016) An ancient and conserved function for Armadillo-related proteins in the control of spore and seed germination by abscisic acid. New Phytol 211:940–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore TC (2012) Biochemistry and physiology of plant hormones. Springer, New York

    Google Scholar 

  • Morffy N, Strader LC (2020) Old town roads: routes of auxin biosynthesis across kingdoms. Curr Opin Plant Biol 55:21–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morikawa T, Saga H, Hashizume H, Ohta D (2009) CYP710A genes encoding sterol C22-desaturase in Physcomitrella patens as molecular evidence for the evolutionary conservation of a sterol biosynthetic pathway in plants. Planta 229:1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Moturu TR, Thula S, Singh RK, Nodzyński T, Vařeková RS, Friml J, Simon S (2018) Molecular evolution and diversification of the SMXL gene family. J Exp Bot 69:2367–2378

    Article  CAS  PubMed  Google Scholar 

  • Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol 162:169–180

    Article  CAS  PubMed  Google Scholar 

  • Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32:295–318

    Article  CAS  PubMed  Google Scholar 

  • Nyman LP, Cutter EG (1981) Auxin–cytokinin interaction in the inhibition, release, and morphology of gametophore buds of Plagiomnium cuspidatum from apical dominance. Can J Bot 59:750–762

    Article  CAS  Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Oliver JP, Castro A, Gaggero C, Cascón T, Schmelz EA, Castresana C, Ponce De León I (2009) Pythium infection activates conserved plant defense responses in mosses. Planta 230:569–579

    Article  CAS  PubMed  Google Scholar 

  • Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447

    Article  CAS  PubMed  Google Scholar 

  • Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K (2009) The evolution of nuclear auxin signalling. BMC Evol Biol 9:1–16

    Article  Google Scholar 

  • Park J, Lee Y, Martinoia E, Geisler M (2017) Plant hormone transporters: what we know and what we would like to know. BMC Biol 15:1–15

    Article  Google Scholar 

  • Peng Y, Sun T, Zhang Y (2017) Perception of salicylic acid in Physcomitrella patens. Front Plant Sci 8:1–5

    Article  Google Scholar 

  • Pils B, Heyl A (2009) Unraveling the evolution of cytokinin signaling. Plant Physiol 151:782–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plavskin Y, Nagashima A, Perroud P-F, Hasebe M, Quatrano RS, Atwal GS, Timmermans MCP (2016) Ancient trans-acting siRNAs confer robustness and sensitivity onto the auxin response. Dev Cell 36:276–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ponce de León I, Schmelz EA, Gaggero C, Castro A, Álvarez A, Montesano M (2012) Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. Mol Plant Pathol 13:960–974

    Article  PubMed Central  PubMed  Google Scholar 

  • Ponce de León I, Hamberg M, Castresana C (2015) Oxylipins in moss development and defense. Front Plant Sci 6:1–12

    Google Scholar 

  • Pressel S, Duckett JG (2010) Cytological insights into the desiccation biology of a model system: moss protonemata. New Phytol 185:944–963

    Article  PubMed  Google Scholar 

  • Prigge MJ, Lavy M, Ashton NW, Estelle M (2010) Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 20:1907–1912

    Article  CAS  PubMed  Google Scholar 

  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogue F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539

    Article  CAS  PubMed  Google Scholar 

  • Quatrano R, McDaniel SF, Khandelwal A, Perroud P-F, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10:182–189

    Article  CAS  PubMed  Google Scholar 

  • Qudeimat E, Faltusz AMC, Wheeler G, Lang D, Holtorf H, Brownlee C, Reski R, Frank W (2008) A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc Natl Acad Sci 105:19555–19560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Goffinet B, Meyberg R, Wu S-Z, Bezanilla M (2020) The moss Physcomitrium (Physcomitrella) patens: a model organism for non-seed plants. Plant Cell 32:1361–1376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358

    Article  CAS  PubMed  Google Scholar 

  • Reski R, Wehe M, Hadeler B, Marienfeld JR, Abel WO (1991) Cytokinin and light quality interact at the molecular level in the chloroplast-mutant PC22 of the moss Physcomitrella. J Plant Physiol 138:236–243

    Article  CAS  Google Scholar 

  • Reutter K, Atzorn R, Hadeler B, Schmülling T, Reski R (1998) Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division. Planta 206:196–203

    Article  CAS  Google Scholar 

  • Richardt S, Timmerhaus G, Lang D, Qudeimat E, Corrêa LGG, Reski R, Rensing SA, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45

    Article  CAS  PubMed  Google Scholar 

  • Richter H, Lieberei R, Strnad M, Novák O, Gruz J, Rensing SA, von Schwartzenberg K (2012) Polyphenol oxidases in Physcomitrella: functional PPO1 methylation and chromatin patterning knockout modulates cytokinin-dependent development in the moss Physcomitrella patens. J Exp Bot 63:5121–5135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohwer F, Bopp M (1985) Ethylene synthesis in moss protonema. J Plant Physiol 117:331–338

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795

    Article  CAS  Google Scholar 

  • Ruchika CZ, Péli ER (2020) Effect of salicylic acid pre-treatment after long-term desiccation in the moss Syntrichia ruralis (Hedw.) Web. and Mohr. Plants 9:1097

    Article  CAS  PubMed Central  Google Scholar 

  • Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M (2003) Involvement of auxin and homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development 130:4835–4846

    Article  CAS  PubMed  Google Scholar 

  • Sakata Y, Komatsu K, Taji T, Tanaka S (2009) Role of PP2C-mediated ABA signaling in the moss Physcomitrella patens. Plant Signal Behav 4:887–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakata Y, Nakamura I, Taji T, Tanaka S, Quatrano RS (2010) Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens. Plant Signal Behav 5:1061–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakata Y, Komatsu K, Takezawa D (2014) ABA as a universal plant hormone. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany. Springer, Berlin, pp 57–96

    Chapter  Google Scholar 

  • Saruhashi M, Ghosh TK, Arai K, Ishizaki Y, Hagiwara K, Komatsu K, Shiwa Y, Izumikawa K, Yoshikawa H, Umezawa T, Sakata Y, Takezawa D (2015) Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc Natl Acad Sci USA 112:E6388–E6396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saunders MJ (1986) Calcium mediation of cytokinin-induced cell division. In: Trewavas AJ (ed) Molecular and cellular aspects of calcium in plant development. Springer, Boston, pp 185–192

    Chapter  Google Scholar 

  • Sawa S, Tabata R (2011) RPK2 functions in diverged CLE signaling. Plant Signal Behav 6:86–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in arabidopsis. Plant Physiol 165:1221–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer DG, Zrÿd J-P (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Scholz J, Brodhun F, Hornung E, Herrfurth C, Stumpe M, Beike AK, Faltin B, Frank W, Reski R, Feussner I (2012) Biosynthesis of allene oxides in Physcomitrella patens. BMC Plant Biol 12:228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schumaker KS, Dietrich MA (1998) Hormone-induced signaling during moss development. Annu Rev Plant Physiol Plant Mol Biol 49:501–523

    Article  CAS  PubMed  Google Scholar 

  • Senger T, Wichard T, Kunze S, Göbel C, Lerchl J, Pohnert G, Feussner I (2005) A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J Biol Chem 280:7588–7596

    Article  CAS  PubMed  Google Scholar 

  • Shinozawa A et al (2019) SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Commun Biol 2:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Spíchal L (2012) Cytokinins—recent news and views of evolutionally old molecules. Funct Plant Biol 39:267–284

    Article  Google Scholar 

  • Stevenson SR et al (2016) Genetic analysis of Physcomitrella patens identifies abscisic acid non-responsive, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell 28:1310–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stumpe M, Bode J, Göbel C, Wichard T, Schaaf A, Frank W, Frank M, Reski R, Pohnert G, Feussner I (2006) Biosynthesis of C9-aldehydes in the moss Physcomitrella patens. Biochim Biophys Acta Mol Cell Biol Lipids 1761:301–312

    Article  CAS  Google Scholar 

  • Stumpe M, Göbel C, Faltin B, Beike AK, Hause B, Himmelsbach K, Bode J, Kramell R, Wasternack C, Frank W, Reski R, Feussner I (2010) The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol 188:740–749

    Article  CAS  PubMed  Google Scholar 

  • Sun L et al (2016) Functional investigation of two 1-aminocyclopropane-1-carboxylate (ACC) synthase-like genes in the moss Physcomitrella patens. Plant Cell Rep 35:817–830

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Harpazi B, Wijerathna-Yapa A, Merilo E, de Vries J, Michaeli D, Gal M, Cuming AC, Kollist H, Mosquna A (2019) A ligand-independent origin of abscisic acid perception. Proc Natl Acad Sci 116:24892–24899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szweykowska A, Korcz I (1972) Inhibition of cell division in a moss protonema by some cytokinin isomers. Planta 108:279–282

    Article  CAS  PubMed  Google Scholar 

  • Szweykowska A, Dornowska E, Cybulska A, Asiek GW (1971) The cell division response to cytokinins in isolated cell cultures of the protonema of Funaria hygrometrica and its comparison with the bud induction response. Biochem Physiol Der Pflanz 162:514–525

    Article  CAS  Google Scholar 

  • Szweykowska A, Korcz I, Jaskiewicz-Mroczkowska B, Metelska M (1972) The effect of various cytokinins and other factors on the protonemal cell divisions and the induction of gametophores in Ceratodon purpureus. Acta Soc Bot Pol 41:401–409

    Article  CAS  Google Scholar 

  • Takezawa D, Watanabe N, Ghosh TK, Saruhashi M, Suzuki A, Ishiyama K, Somemiya S, Kobayashi M, Sakata Y (2015) Epoxycarotenoid-mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes. New Phytol 206:209–219

    Article  CAS  PubMed  Google Scholar 

  • Tam THY, Catarino B, Dolan L (2015) Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. Proc Natl Acad Sci 112:E3959–E3968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao S, Estelle M (2018) Mutational studies of the Aux/IAA proteins in Physcomitrella reveal novel insights into their function. New Phytol 218:1534–1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thelander M, Olsson T, Ronne H (2005) Effect of the energy supply on filamentous growth and development in Physcomitrella patens. J Exp Bot 56:653–662

    Article  CAS  PubMed  Google Scholar 

  • Thelander M, Landberg K, Sundberg E (2018) Auxin-mediated developmental control in the moss Physcomitrella patens. J Exp Bot 69:277–290

    Article  CAS  PubMed  Google Scholar 

  • Timmerhaus G, Hanke ST, Buchta K, Rensing SA (2011) Prediction and validation of promoters involved in the abscisic acid response in Physcomitrella patens. Mol Plant 4:713–729

    Article  CAS  PubMed  Google Scholar 

  • Tomoi T, Kawade K, Kitagawa M, Sakata Y, Tsukaya H, Fujita T (2020) Quantitative imaging reveals distinct contributions of SnRK2 and ABI3 in plasmodesmatal permeability in Physcomitrella patens. Plant Cell Physiol 61:942–956

    Article  CAS  PubMed  Google Scholar 

  • Toshima E, Nanjo Y, Komatsu S, Abe T, Matsuura H, Takahashi K (2014) Proteomic analysis of Physcomitrella patens treated with 12-oxo-phytodienoic acid, an important oxylipin in plants. Biosci Biotechnol Biochem 78:946–953

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol 7:1–17

    Article  Google Scholar 

  • Vesty EF et al (2016) The decision to germinate is regulated by divergent molecular networks in spores and seeds. New Phytol 211:952–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Viaene T et al (2014) Directional auxin transport mechanisms in early diverging land plants. Curr Biol 24:2786–2791

    Article  CAS  PubMed  Google Scholar 

  • von Maltzahn KE (1959) Interaction between kinetin and indoleacetic acid in the control of bud reactivation in Splachnum ampullaceum (L.) Hedw. Nature 183:60–61

    Article  Google Scholar 

  • von Schwartzenberg K (2018) Hormonal regulation of development by auxin and cytokinin in moss. In: Roberts JA (ed) Annual plant reviews online, major reference works. Wiley, Chichester, pp 246–281

    Chapter  Google Scholar 

  • von Schwartzenberg K, Kruse S, Reski R, Moffatt B, Laloue M (1998) Cloning and characterization of an adenosine kinase from Physcomitrella involved in cytokinin metabolism. Plant J 13:249–257

    Article  Google Scholar 

  • von Schwartzenberg K, Schultze W, Kassner H (2004) The moss Physcomitrella patens releases a tetracyclic diterpene. Plant Cell Rep 22:780–786

    Article  Google Scholar 

  • von Schwartzenberg K, Núñez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, Strnad M (2007) Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol 145:786–800

    Article  Google Scholar 

  • von Schwartzenberg K, Lindner AC, Gruhn N, Šimura J, Novák O, Strnad M, Gonneau M, Nogué F, Heyl A (2016) CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens. J Exp Bot 67:667–679

    Article  Google Scholar 

  • Walker CH, Siu-Ting K, Taylor A, O’Connell MJ, Bennett T (2019) Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biol 17:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang TL, Cove DJ, Beutelmann P, Hartmann E (1980) Isopentenyladenine from mutants of the moss, Physcomitrella patens. Phytochemistry 19:1103–1105

    Article  CAS  Google Scholar 

  • Wang TL, Horgan R, Cove D (1981) Cytokinins from the moss Physcomitrella patens. Plant Physiol 68:735–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18:3429–3442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Kuang T, He Y (2010) Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis. BMC Plant Biol 10:192

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Liu Y, Li S-S, Han G-Z (2015) Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol 167:872–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X et al (2019) ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytol 221:341–355

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    Article  CAS  PubMed  Google Scholar 

  • Went F (1926) On growth-accelerating substances in the coleoptile of Avena sativa. Proc k Ned Akad Van Wet 30:10–19

    Google Scholar 

  • Werner O, Ros Espín RM, Bopp M, Atzorn R (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186:99–103

    Article  CAS  PubMed  Google Scholar 

  • Whitewoods C (2020) Evolution of CLE peptide signalling. Semin Cell Dev Biol 109:12–19

    Article  PubMed  Google Scholar 

  • Whitewoods CD et al (2018) CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr Biol 28:2365–2376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wichard T, Göbel C, Feussner I, Pohnert G (2005) Unprecedented lipoxygenase/hydroperoxide lyase pathways in the moss Physcomitrella patens. Angew Chem Int Ed 44:158–161

    Article  CAS  Google Scholar 

  • Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA (2010) The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol 153:1123–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamagami A, Saito C, Nakazawa M, Fujioka S, Uemura T, Matsui M, Sakuta M, Shinozaki K, Osada H, Nakano A, Asami T, Nakano T (2017) Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci Rep 7:5739

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi YL, Ishida T, Sawa S (2016) CLE peptides and their signaling pathways in plant development. J Exp Bot 67:4813–4826

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Waters MT (2020) Perception of karrikins by plants: a continuing enigma. J Exp Bot 71:1774–1781

    Article  CAS  PubMed  Google Scholar 

  • Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230

    Article  CAS  PubMed  Google Scholar 

  • Yasumura Y, Pierik R, Fricker MD, Voesenek LACJ, Harberd NP (2012) Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. Plant J 72:947–959

    Article  CAS  PubMed  Google Scholar 

  • Yasumura Y, Pierik R, Kelly S, Sakuta M, Voesenek LACJ, Harberd NP (2015) An ancestral role for CONSTITUTIVE TRIPLE RESPONSE1 proteins in both ethylene and abscisic acid signaling. Plant Physiol 169:283–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yevdakova NA, von Schwartzenberg K (2007) Characterisation of a prokaryote-type tRNA-isopentenyltransferase gene from the moss Physcomitrella patens. Planta 226:683–695

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Ohnishi T, Shibata K, Asahina M, Nomura T, Fujita T, Ishizaki K, Kohchi T (2017) Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry 136:46–55

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, McErlean CSP (2018) Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69:2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2020) The hornwort genome and early land plant evolution. Nat Plants 6:107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Li Q, Chen Z, Lv Q, Bao F, Wang X, He Y (2018) Regulatory mechanism of ABA and ABI3 on vegetative development in the moss Physcomitrella patens. Int J Mol Sci 19:1–19

    Article  CAS  Google Scholar 

  • Zheng B, Bai Q, Wu L, Liu H, Liu Y, Xu W, Li G, Ren H, She X, Wu G (2019) EMS1 and BRI1 control separate biological processes via extracellular domain diversity and intracellular domain conservation. Nat Commun 10:4165

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu J-Y, Sae-Seaw J, Wang Z-Y (2013) Brassinosteroid signalling. Development 140:1615–1620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Florence Charlot and Beate Hoffmann from the IJPB for providing several pictures used in this review’s figures. We also thank Catherine Rameau, Alexandre de Saint Germain and Pierre-François Perroud from the IJPB for their kind assistance with proofreading. We are grateful to Mark Tepfer (IJPB) for his kind editing of the English.

Funding

The IJPB benefits from the support of Saclay Plant Sciences-SPS (ANR-17-EUR-0007).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to compiling and reading the appropriate literature and to the writing of the present review paper.

Corresponding author

Correspondence to Sandrine Bonhomme.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillory, A., Bonhomme, S. Phytohormone biosynthesis and signaling pathways of mosses. Plant Mol Biol 107, 245–277 (2021). https://doi.org/10.1007/s11103-021-01172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01172-6

Keywords

Navigation