Skip to main content
Log in

Functional investigation of two 1-aminocyclopropane-1-carboxylate (ACC) synthase-like genes in the moss Physcomitrella patens

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Two ACC synthase-like (ACL) proteins in the moss Physcomitrella patens have no ACS activity, and PpACL1 functions as an l -cystine/ l -cysteine C-S lyase.

Abstract

The ethylene biosynthetic pathway has been well characterized in higher plants, and homologs of a key enzyme in this pathway, ACS, have been reported in several algae and mosses, including Physcomitrella patens. However, the function of the ACS homologs in P. patens has not been investigated. In this research, we cloned two putative ACS genes from the P. patens genome, namely PpACS-Like 1 and 2, and investigated whether their encoded proteins had in vitro and in vivo ACS activity. In vitro biochemical assays using purified PpACL1 and PpACL2 showed that neither protein had ACS activity. Subsequently, we generated transgenic Arabidopsis lines expressing 35S:PpACL1 and 35S:PpACL2, and found that the transgenic etiolated seedlings that overexpressed either of these proteins lacked the constitutive triple response phenotype and did not emit excess levels of ethylene, indicating that neither of the PpACS-Like proteins had in vivo ACS activity. Furthermore, we found that PpACL1 functions as a C-S lyase that uses l-cystine and l-cysteine as substrates, rather than as an aminotransferase. Together, these results indicated that PpACL1 and PpACL2 are not true ACS genes as those found in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACS:

1-aminocyclopropane-1-carboxylate synthase

C-S lyase:

Carbon–sulfur lyase

SAM:

S-adenosyl-l-methionine

ACC:

1-aminocyclopropane-1-carboxylate

PLP:

Pyridoxal-5′-phosphate

AATase:

Aspartate aminotransferase

References

  • Abdel-Ghany SE, Ye H, Garifullina GF, Zhang L, Pilon-Smits EA, Pilon M (2005) Iron-sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA. Plant Physiol 138:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press Inc, San Diego

    Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander FW, Sandmeier E, Mehta PK, Christen P (1994) Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Eur J Biochem 219:953–960

    Article  CAS  PubMed  Google Scholar 

  • Alvarez C, Bermudez MA, Romero LC, Gotor C, Garcia I (2012) Cysteine homeostasis plays an essential role in plant immunity. New Phytol 193:165–177

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    Article  CAS  Google Scholar 

  • Balk J, Pilon M (2011) Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci 16:218–226

    Article  CAS  PubMed  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riano-Pachon DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sorensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WW, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loque D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes JR, Lorenz WW, Dean JF (2008) Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.). Gene 413:18–31

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  Google Scholar 

  • Bleecker AB (1999) Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4:269–274

    Article  PubMed  Google Scholar 

  • Bleecker AB, Esterlle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Chernys J, Kende H (1996) Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia. Planta 200:113–118

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cookson C, Osborne DJ (1978) The stimulation of cell extension by ethylene and auxin in aquatic plants. Planta 144:39–47

    Article  CAS  PubMed  Google Scholar 

  • Cove DJ, Perroud PF, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb protoc: pdb.emo115

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong A, Booker MA (2015) Producing the ethylene signal: regulation and diversification of ethylene biosynthetic enzymes. Plant Physiol 169:42–50

    Article  PubMed  Google Scholar 

  • Driessche TV, Kevers C, Collet M, Gaspar T (1988) Acetabularia mediterranea and ethylene: production in relation with development, circadian rhythms in emission, and response to external application. J Plant Physiol 133:635–639

    Article  Google Scholar 

  • Feng L, Geck MK, Eliot AC, Kirsch JF (2000) Aminotransferase activity and bioinformatic analysis of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry 39:15242–15249

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2015) Appearance and elaboration of the ethylene receptor family during land plant evolution. Plant Mol Biol 87:521–539

    Article  CAS  PubMed  Google Scholar 

  • García I, Gotor C, Romero LC (2015) Cysteine homeostasis. In: D’Mello JPF (ed) Amino acids in higher plants. CABI Publishing, Wallingford, pp 219–233

    Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Ishida K, Yamashino T, Nakanishi H, Mizuno T (2010) Classification of the genes involved in the two-component system of the moss Physcomitrella patens. Biosci Biotech Bioch 74:2542–2545

    Article  CAS  Google Scholar 

  • Jakubowicz M (2002) Structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants. Acta Biochim Pol 49:757–774

    CAS  PubMed  Google Scholar 

  • Jones PR, Manabe T, Awazuhara M, Saito K (2003) A new member of plant CS-lyases a cystine lyase from Arabidopsis thaliana. J Biol Chem 278:10291–10296

    Article  CAS  PubMed  Google Scholar 

  • Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nature Plants 1:1–7

    Article  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Kiddle GA, Bennett RN, Hick AJ, Wallsgrove RM (1999) C-S lyase activities in leaves of crucifers and non-crucifers, and the characterization of three classes of C-S lyase activities from oilseed rape (Brassica napus L.). Plant, Cell Environ 22:433–445

    Article  CAS  Google Scholar 

  • Kwa SH, Wee YC, Kumar PP (1995) Role of ethylene in the production of sporophytes from Platycerium coronarium (Koenig) desv. frond and rhizome pieces cultured in vitro. J Plant Growth Regul 14:183–189

    Article  CAS  Google Scholar 

  • Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, He Z, Cui W, Xie Y (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K (+) loss in seedlings of Medicago sativa. Plant Sci 225:117–129

    Article  CAS  PubMed  Google Scholar 

  • Lancaster JE, Shaw ML, Joyce MDP, McCallum JA, McManus MT (2000) A novel alliinase from onion roots. Biochemical characterization and cDNA cloning. Plant Physiol 22:1269–1280

    Article  Google Scholar 

  • Leibrecht I, Kessler D (1997) A novel l-Cysteine/Cystine CS-lyase directing [2Fe-2S] cluster formation of synechocystis ferredoxin. J Biol Chem 272:10442–10447

    Article  CAS  PubMed  Google Scholar 

  • Li N, Mattoo AK (1994) Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme. J Biol Chem 269:6908–6917

    CAS  PubMed  Google Scholar 

  • Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Aken SV, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Gong Q, Ma Y, Li P, Li J, Yang S, Yuan L, Yu Y, Pan D, Xu F, Wang NN (2010) cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61:1655–1669

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Han XM, Ren LL, Yang HL, Zeng QY (2013) Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol 161:773–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillard P, Thepenier C, Gudin C (1993) Determination of an ethylene biosynthesis pathway in the unicellular green alga, Haematococcus pluvialis. Relationship between growth and ethylene production. J Appl Phycol 5:93–98

    Article  CAS  Google Scholar 

  • Mehta PK, Christen P (1994) Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases. Biochem Bioph Res Co 198:138–143

    Article  CAS  Google Scholar 

  • Mehta PK, Christen P (1998) The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. In: Purich DL (ed) Advances in enzymology and related areas of molecular biology: Mechanism of enzyme action. Wiley-Blackwell, Oxford, pp 129–184

    Google Scholar 

  • Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777

    Article  CAS  PubMed  Google Scholar 

  • Mishler BD, Oliver MJ (2009) Putting Physcomitrella patens on the tree of life: the evolution and ecology of mosses. In: Knight CD, Perroud PF, Cove DJ (eds) The moss Physcomitrella patens. Wiley-Blackwell, Oxford, pp 1–15

    Chapter  Google Scholar 

  • Munt O, Prüfer D, Gronover CS (2013) A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity. J Plant Physiol 170:33–40

    Article  CAS  PubMed  Google Scholar 

  • Osborne DJ, Walters J, Milborrow BV, Norville A, Stange LM (1996) Evidence for a non-ACC ethylene biosynthesis pathway. Phytochemistry 42:51–60

    Article  CAS  Google Scholar 

  • Plettner INA, Steinke M, Malin G (2005) Ethene (ethylene) production in the marine macroalga Ulva (Enteromorpha) intestinalis L. (Chlorophyta, Ulvophyceae) effect of light-stress and co-production with dimethyl sulphide. Plant, Cell Environ 28:1136–1145

    Article  CAS  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol 143:410–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez EC, Whitaker JR (1998) Cystine lyases in plants: a comprehensive review. J Food Biochem 22:427–440

    Article  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Reski R (1998) Development, genetics and molecular biology of mosses. Botanica Acta 111:1–15

    Article  CAS  Google Scholar 

  • Rohwer F, Bopp M (1985) Ethylene synthesis in moss protonema. J Plant Physiol 117:331–338

    Article  CAS  PubMed  Google Scholar 

  • Rorick MM, Wagner GP (2009) The origin of conserved protein domains and amino acid repeats via adaptive competition for control over amino acid residues. J Mol Evol 70:29–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Rose P, Whiteman M, Moore PK, Zhu YZ (2005) Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 22:351–368

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805

    Article  CAS  Google Scholar 

  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleator RD (2014) Proteins. Bioengineered 3:80–85

    Article  Google Scholar 

  • Stange LMC, Osborne DJ (1989) Contrary effects of ethylene and ACC on cell growth in the liverwort Riella Helicophylla. In: Clijsters H, De Proft M, Marcelle R, Van Poucke M (eds) Biochemical and physiological aspects of ethylene production in lower and higher plants. Springer, Berlin, pp 341–348

    Chapter  Google Scholar 

  • Timme RE, Delwiche CF (2010) Uncovering the evolutionary origin of plant molecular processes: comparison of Coleochaete (Coleochaetales) and Spirogyra (Zygnematales) transcriptomes. BMC Plant Biol 10:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Tittle FL (1987) Auxin-stimulated ethylene production in fern gametophytes and sporophytes. Physiol Plant 70:499–502

    Article  CAS  Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, Zhang X, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):131–151

    Google Scholar 

  • Wang W, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18:3429–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu Y, Li SS, Han GZ (2015) Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol 167:872–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DE, de Vos WM, van der Oost J (2002) Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus. Archaea 1:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasumura Y, Pierik R, Fricker MD, Voesenek LA, Harberd NP (2012) Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. Plant J 72:947–959

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Nakano Y, Amano A, Yoshimura M, Fukamachi H, Oho T, Koga T (2002) lcd from Streptococcus anginosus encodes a C-S lyase with α, β-elimination activity that degrades L-cysteine. Microbiology 148:3961–3970

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Zhang CJ, Shang HQ, Wang XF, Wei M, Yang FJ, Shi QH (2013) Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt tolerance of cucumber hypocotyls and radicles. J Integr Agr 12:445–456

    Article  Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhang TC, Qiao Q, Zhong Y (2012) Detecting adaptive evolution and functional divergence in aminocyclopropane-1-carboxylate synthase (ACS) gene family. Comput Biol Chem 38:10–16

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Hongwei Guo of Peking University for supplying the P. patens, and thanks also go to Dr. Li Xiong for her suggestions on editing the manuscript. This research was financially supported by the Major Technological Program on Cultivation of New Varieties of Genetically Modified Organisms (Grant No. 2014ZX0800930B-002), the National Natural Science Foundation of China (Grant No. 31570293), the Key Grant Project of the Chinese Ministry of Education (Grant No. 313032), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130031130003), and Tianjin Research Program of Applied Basic and Cutting-edge Technologies (Grant No. 13JCQNJC15000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ning Wang.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Communicated by Y.-T. Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1096 kb)

Supplementary material 2 (PPTX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Dong, H., Nasrullah et al. Functional investigation of two 1-aminocyclopropane-1-carboxylate (ACC) synthase-like genes in the moss Physcomitrella patens . Plant Cell Rep 35, 817–830 (2016). https://doi.org/10.1007/s00299-015-1923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1923-5

Keywords

Navigation