Skip to main content
Log in

Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and ecodormancy in summer, fall, and winter, respectively. These dormancy phases can also be induced in growth chambers by manipulating photoperiod and temperature. In this study, UABs induced into the three phases of dormancy under controlled conditions were used to compare changes in phytohormone and transcriptome profiles. Results indicated that relatively high levels of ABA, the ABA metabolite PA, and IAA were found in paradormant buds. When UABs transitioned from para- to endodormancy, ABA and PA levels decreased, whereas IAA levels were maintained. Additionally, transcript profiles associated with regulation of soluble sugars and ethylene activities were also increased during para- to endodormancy transition, which may play some role in maintaining endodormancy status. When crown buds transitioned from endo- to ecodormancy, the ABA metabolites PA and DPA decreased significantly along with the down-regulation of ABA biosynthesis genes, ABA2 and NCED3. IAA levels were also significantly lower in ecodormant buds than that of endodormant buds. We hypothesize that extended cold treatment may trigger physiological stress in endodormant buds, and that these stress-associated signals induced the endo- to ecodormancy transition and growth competence. The up-regulation of NAD/NADH phosphorylation and dephosphorylation pathway, and MAF3-like and GRFs genes, may be considered as markers of growth competency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • [SAS] Statistical Analysis Systems (1989) SAS/STAT User’s Guide, Volumes 1 and 2, Version 6, 4th edn. Statistical Analysis Systems Institute, Cary, NC

    Google Scholar 

  • Airoldi CA, McKay M, Davies B (2015) MAF2 is regulated by temperature-dependent splicing and represses flowering at low temperatures in parallel with FLM. PLoS ONE 10:e0126516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant 120:421–433

    Article  CAS  PubMed  Google Scholar 

  • Anderson JV, Gesch RW, Jia Y, Chao WS, Horvath DP (2005) Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28:1567–1578

    Article  CAS  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME, Hernandez AG, Thimmapuram J, Liu L, Gong GL, Band M, Kim R, Mikel MA (2007) Characterization of an EST database for the perennial weed leafy spurge: an important resource for weed biology research. Weed Sci 55:193–203

    Article  CAS  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME (2010) Bud dormancy in perennial plants: a mechanism for survival. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Topics in current genetics 21:69–90, Hohmann S (series ed). Springer, Berlin.

    Chapter  Google Scholar 

  • Anderson JV, Doğramacı M, Horvath DP, Foley ME, Chao WS, Suttle JC, Thimmapuram J, Hernandez AG, Ali S, Mikel MA (2012) Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense). Funct Integr Genomics 12:515–531

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911–921

    Google Scholar 

  • Bangsund DA, Leistritz FL, Leitch JA (1999) Assessing economic impacts of biological control of weeds: the case of leafy spurge in northern Great Plains of the United States. J Environ Manage 56:35–43

    Article  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA (2006) Axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9:35–40

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genom 4:495–507

    Article  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA (2015) Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chao WS (2008) Real-time PCR as a tool to study weed biology. Weed Sci 56:290–296

    Article  CAS  Google Scholar 

  • Chao WS, Horvath DP, Anderson JV, Foley ME (2005) Potential model weeds to study genomics, ecology, and physiology in the 21st century. Weed Sci 53:929–937

    Article  CAS  Google Scholar 

  • Chao WS, Serpe MD, Anderson JV, Gesch RW, Horvath DP (2006) Sugars, hormones, and environment affect the dormancy status in underground adventitious buds of leafy spurge (Euphorbia esula L.). Weed Sci 54:59–68

    Article  CAS  Google Scholar 

  • Chao WS, Foley ME, Horvath DP, Anderson JV (2007) Signals regulating dormancy in vegetative buds. Int J Plant Develop Biol 1:49–56

    Google Scholar 

  • Chao WS, Doğramacı M, Foley ME, Horvath DP, Anderson JV (2012) Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula). PLoS ONE 7:e42839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao WS, Doğramacı M, Anderson JV, Foley ME, Horvath DP (2014) The resemblance and disparity of gene expression in dormant and non-dormant seeds and crown buds of leafy spurge (Euphorbia esula). BMC Plant Biol 14:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao WS, Doğramacı M, Horvath DP, Anderson JV, Foley ME (2016) Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge. BMC Plant Biol 16:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 3:405–417

    Article  CAS  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    Article  CAS  PubMed  Google Scholar 

  • Cline MG (1997) Concepts and terminology of apical dominance. Amer J Bot 84:1064–1069

    Article  CAS  Google Scholar 

  • Cline MG, Choonseok OH (2006) A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance. Ann Bot 98:891–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF (2012) Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet 8:e1002419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doğramacı M, Horvath DP, Chao WS, Foley ME, Christoffers MJ, Anderson JV (2010) Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. Plant Mol Biol 73:207–226

    Article  PubMed  CAS  Google Scholar 

  • Doğramacı M, Horvath DP, Christoffers MJ, Anderson JV (2011) Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds. Funct Integr Genomics 11:611–626

    Article  PubMed  CAS  Google Scholar 

  • Doğramacı M, Foley ME, Chao WS, Christoffers MJ, Anderson JV (2013) Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature. Plant Mol Biol 81:577–593

    Article  PubMed  CAS  Google Scholar 

  • Doğramacı M, Horvath DP, Anderson JV (2014) Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk. Plant Mol Biol 86:409–424

    Article  PubMed  CAS  Google Scholar 

  • Doğramacı M, Horvath DP, Anderson JV (2015) Meta-analysis identifies potential molecular markers for endodormancy in crown buds of leafy spurge. In: Anderson JV (ed). Advances in plant dormancy. Springer International Publishing AG, Switzerland, pp 197–219

    Google Scholar 

  • Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol 142:812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Foley ME, Anderson JV, Horvath DP (2009) The effects of temperature photoperiod and vernalization on regrowth and flowering competence in Euphorbia esula (Euphorbiaceae) crown buds. Botany 87:986–992

    Article  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Ethylene-A key regulator of submergence responses in rice. Plant Sci 175:43–51

    Article  CAS  Google Scholar 

  • Gibson SJ (2004) Sugar and phytohormone response pathways: navigating a signaling network. J Exp Bot 55:253–264

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Jiménez MD, García-Olivares E, Matilla AJ (2001) 1-aminocyclopropane-1-carboxylate oxidase from embryonic axes of germinating chick-pea (Cicer arietinum L.) seeds: cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Sci Res 11:243–253

    Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2 C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNAseq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X, Le C, Wang Y, Li Z, Jiang D, Wang Y, He Y (2013) Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nat Commun 4:1947

    PubMed  PubMed Central  Google Scholar 

  • Hao X, Chao WS, Yang Y, Horvath D (2015) Coordinated expression of FLOWERING LOCUS T and DORMANCY ASSOCIATED MADS-BOX-like genes in leafy spurge. PLoS ONE 10:e0126030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashida SN, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103:819–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heide OM (2001) Photoperiodic control of dormancy in Sedum telephium and some other herbaceous perennial plants. Physiol Plant 113:332–337

    Article  CAS  PubMed  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Soto-Suárez M, Chao WS, Jia Y, Anderson JV (2005) Transcriptome analysis of paradormancy release in root buds of leafy spurge (Euphorbia esula). Weed Sci 53:795–801

    Article  CAS  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genom 9:536

    Article  CAS  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao WS, Anderson JV (2010) Characterization, expression and function of DORMANCY-ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    Article  CAS  PubMed  Google Scholar 

  • Howe GT, Hackett WP, Furnier GR, Klevorn RE (1995) Photoperiodic responses of a northern and southern ecotype of black cottonwood. Physiol Plant 93:695–708

    Article  CAS  Google Scholar 

  • Howe GT, Horvath DP, Dharmawardhana PD, Priest HD, Mockler TC, Strauss SH (2015) Extensive transcriptome changes during natural onset and release of vegetative bud dormancy in Populus. Front Plant Sci 6:00989

    Article  Google Scholar 

  • Hunt L, Lerner F, Ziegler M (2004) NAD – new roles in signalling and gene regulation in plants. New Phytol 163:31–44

    Article  CAS  Google Scholar 

  • Iwamoto M, Baba-Kasai A, Kiyota S, Hara N, Takano M (2010) ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ 33:805–815

    CAS  PubMed  Google Scholar 

  • Jeknić Z, Chen THH (1999) Changes in protein profiles of poplar tissues during the induction of bud dormancy by short-day photoperiods. Plant Cell Physiol 40:25–35

    Article  Google Scholar 

  • Joshi NA, Fass JN (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. Available at https://github.com/najoshi/sickle.

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Tsukaya H (2015) Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J Exp Bot 66:6093–6107

    Article  CAS  Google Scholar 

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  PubMed  Google Scholar 

  • Kwolek VA, Woolhouse HW (1982) Studies on the dormancy of Calluna vulgaris (L.) hull, during winter: the effect of photoperiod and temperature on the induction of dormancy and the annual cycle of development. Ann Bot 49:367–376

    Article  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Leitch JA, Leistritz FL, Bangsund DA (1996) Economic effect of leafy spurge in the Upper Great Plains: methods, models, and results. Impact Assess 14:419–433

    Article  Google Scholar 

  • Leng N, Dawson J, Thomson J, Ruotti V, Rissman A, Smits B, Haag J, Gould M, Stewart R, Kendziorski C (2013) EBSeq: an empirical bayes hierarchical model for inference in RNAseq experiments. University of Wisconsin: Tech Rep 226, Department of Biostatistics and Medical Informatics.

  • Leyser O (2003) Regulation of shoot branching by auxin. Trends Plant Sci 8:541–545

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNAseq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li C, Junttila O, Ernstsen A, Heino P, Palva ET (2003a) Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiol Plant 117:206–212

    Article  CAS  Google Scholar 

  • Li C, Viherä-Aarnio A, Puhakainen T, Junttila O, Heino P, Palva ET (2003b) Ecotype-dependent control of growth, dormancy and freezing tolerance under seasonal changes in Betula pendula Roth. Trees 17:127–132

    CAS  Google Scholar 

  • Li C, Wu N, Liu S (2005) Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia. Biol Plant 49:65–71

    Article  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy associated MADS genes from the EVG locus of [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TD, Thompson AJ, Ruyter-Spira C (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    Article  PubMed  CAS  Google Scholar 

  • Lu SX, Webb CJ, Knowles SM, Kim SH, Wang Z, Tobin EM (2012) CCA1 and ELF3 Interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol 158:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  PubMed  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32(Suppl 2):W20–W25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller B, Sheen J (2007) Advances in cytokinin signaling. Science 318:68–69

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32:959–970

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Gakière B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  CAS  PubMed  Google Scholar 

  • Oliver SL, Lenards AJ, Barthelson RA, Merchant N, McKay SJ (2013) Using the iPlant collaborative discovery environment. Curr Protoc Bioinform 1:22

    Google Scholar 

  • Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B (2015) Growth-Regulating Factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8:998–1010

    Article  CAS  PubMed  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    Article  CAS  PubMed  Google Scholar 

  • Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E (2009) Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol 71:403–423

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Jansen MAK (2005a) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ and cellular level. J Exp Bot 56:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005b) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Ratcliffe OJ, Kuminoto RW, Wong BJ, Riechmann JL (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15:1159–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne PLH, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    Article  CAS  PubMed  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ (2011) De novo assembly and analysis of RNAseq data. Nat Methods 7:909–912

    Article  CAS  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland LJ, Arora R (1997) Proteins related to endodormancy (rest) in woody perennials. Plant Sci 126:119–144

    Article  CAS  Google Scholar 

  • Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjärvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640

    Article  CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiya Y, Koshiba T (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim D, Ko J, Kim W, Wang Q, Keathley D, Han K (2014) A molecular framework for seasonal growth-dormancy regulation in perennial plants. Hortic Res 1:1–9

    Article  CAS  Google Scholar 

  • Shimizu-Sato S, Mori H (2001) Control in outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorce C, Lorenzi R, Ceccarelli N, Ranalli P (2000) Changes in free and conjugated IAA during dormancy and sprouting of potato tubers. Aust J Plant Physiol 27:371–377

    Article  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudawan B, Chang CS, Chao HF, Ku MS, Yen YF (2016) Hydrogen cyanamide breaks grapevine bud dormancy in the summer through transient activation of gene expression and accumulation of reactive oxygen and nitrogen species. BMC Plant Biol 16:202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suttle JC (1998) Involvement of ethylene in potato microtuber dormancy. Plant Physiol 118:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tähtiharju S, Palva T (2001) Antisense inhibition of protein phosphatase 2 C accelerates cold acclimation in Arabidopsis thaliana. Plant J 26:461–470

    Article  PubMed  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Nat Acad Sci USA 94:12235–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thimann K, Skoog F (1933) Studies on the growth hormone of plants. III. The inhibitory action of the growth substance on bud development. Proc Nat Acad Sci USA 19:714–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Wake CMF, Fennell A (2000) Morphological, physiological and dormancy responses of three Vitis genotypes to short photoperiod. Physiol Plant 109:203–210

    Article  CAS  Google Scholar 

  • Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, Fang H, Hong H, Shen J, Su Z et al (2014) The concordance between RNAseq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol 32:926–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren GJ, Thorlby GJ, Knight MR (2000) Chap. 17 – The molecular biological approach to understanding freezing-tolerance in the model plant, Arabidopsis thaliana. Cell Mol Response Stress 1:245–258

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wang J, Zhang Z, Quan R, Zhang H, Deng XW, Ma L, Huang R (2013) Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet 9:e1004025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S, Nikitin A, Daraselia N, Mazo I (2006) Automatic pathway building in biological association networks. BMC Bioinform 7:1–13

    Article  CAS  Google Scholar 

  • Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNAseq and microarray in transcriptome profiling of activated T cells. PLoS ONE 9:e78644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Wayne A. Sargent, USDA-ARS, Fargo, ND for his technical assistance; Cheryl A. Huckle, USDA-ARS, Fargo, ND for growing leafy spurge; and Dr. Mark West, USDA-ARS, Fort Collins, CO for assistance in statistical analysis.

Author contributions

WSC and MD contributed equally to this work. WSC, MD, DPH, JVA, and MEF conceived and designed the experiments. WSC and MD performed the experiments. MD analyzed the data. WSC wrote the paper. WSC, MD, DPH, JVA, and MEF revised and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wun S. Chao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Wun S. Chao and Münevver Doğramacı have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2017_607_MOESM1_ESM.xlsx

Table S1—Number of raw fragments, number of trimmed fragments, and contig represented in each of the 12 RNAseq samples. (XLSX 9 KB)

Table S2—RNAseq master file. (XLSX 40234 KB)

Table S3—Primers used for RT-qPCR analysis. (XLSX 40 KB)

Table S4—Heat map diagram showing changes in transcript abundance obtained by RNAseq vs. RT-qPCR analysis. (XLSX 36 KB)

11103_2017_607_MOESM5_ESM.xlsx

Table S5—Hormone-related genes that are significant and differentially-expressed based on RNAseq analysis. (XLSX 804 KB)

11103_2017_607_MOESM6_ESM.xlsx

Table S6—AraCyc pathways that are over-represented for comparisons Endo vs. Para and Eco vs. Endo based on GSEA. (XLSX 78 KB)

Table S7—Central hubs for expression targets, small molecules, and miRNA targets based on SNEA. (XLSX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, W.S., Doğramacı, M., Horvath, D.P. et al. Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge. Plant Mol Biol 94, 281–302 (2017). https://doi.org/10.1007/s11103-017-0607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0607-7

Keywords

Navigation