Skip to main content
Log in

Transcriptome portrait of cellulose-enriched flax fibres at advanced stage of specialization

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Functional specialization of cells is among the most fundamental processes of higher organism ontogenesis. The major obstacle to studying this phenomenon in plants is the difficulty of isolating certain types of cells at defined stages of in planta development for in-depth analysis. A rare opportunity is given by the developed model system of flax (Linum usitatissimum L.) phloem fibres that can be purified from the surrounding tissues at the stage of the tertiary cell wall deposition. The performed comparison of the whole transcriptome profile in isolated fibres and other portions of the flax stem, together with fibre metabolism characterization, helped to elucidate the general picture of the advanced stage of plant cell specialization and to reveal novel participants potentially involved in fibre metabolism regulation and cell wall formation. Down-regulation of all genes encoding proteins involved in xylan and lignin synthesis and up-regulation of genes for the specific set of transcription factors transcribed during tertiary cell wall formation were revealed. The increased abundance of transcripts for several glycosyltransferases indicated the enzymes that may be involved in synthesis of fibre-specific version of rhamnogalacturonan I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ageeva MV, Petrovská B, Kieft H, Salnikov VV, Snegireva AV, van Dam JEG, Emons AMC, Gorshkova TA, van Lammeren AAM (2005) Intrusive growth of flax phloem fibers is of intercalary type. Planta 222:565–574

    Article  CAS  PubMed  Google Scholar 

  • Ambrose C, DeBono A, Wasteneys G (2013) Cell geometry guides the dynamic targeting of apoplastic GPI-linked lipid transfer protein to cell wall elements and cell borders in Arabidopsis thaliana. PLoS ONE 8:e81215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300

    Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S et al (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowling AJ, Vaughn KC (2008) Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. Am J Bot 95:655–663

    Article  PubMed  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA., Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Sci 311:1940–1942

  • Carpita N, McCann M (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and Molecular Biology of Plants. Rockwell, MD, American Society of Plant Physiologists, pp. 52–108

  • Cassan-Wang H, Goué N, Saidi MN et al (2013) Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front Plant Sci 4:189. doi:10.3389/fpls.2013.00189

    Article  PubMed  PubMed Central  Google Scholar 

  • Cocuron J-C, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel NV, Wilkerson CG (2007) A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc Natl Acad Sci USA 104:8550–8555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash PK, Cao Y, Jailani AK et al (2014) Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum). GM Crops Food, 5(2):106–119

  • Day A, Addi M, Kim W, David H, Bert F, Mesnage P, Rolando C, Chabbert B, Neutelings G, Hawkins S (2005) ESTs from the fibre-bearing stem tissues of flax (Linum usitatissimum L.): expression analyses of sequences related to cell wall development. Plant Biol 7:23–32

    Article  CAS  PubMed  Google Scholar 

  • De Pauw MA, Vidmar JJ, Collins J, Bennett RA, Deyholos MK (2007) Microarray analysis of bast fibre producing tissues of Cannabis sativa identifies transcripts associated with conserved and specialised processes of secondary wall development. Funct Plant Biol 34:737–749

    Article  Google Scholar 

  • Devillard C, Walter C (2014) Formation of plant tracheary elements in vitro—a review. New Zeal J For Sci 44:22. doi:10.1186/s40490-014-0022-7

  • Dhugga KS, Barreiro R, Whitten B et al (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Sci 303:363–366

  • Endo S, Pesquet E, Yamaguchi M, Tashiro G, Sato M, Toyooka K, Nishikubo N, Udagawa-Motose M, Kubo M, Fukuda H, Demura T (2009) Identifying new components participating in the secondary cell wall formation of vessel elements in Zinnia and Arabidopsis. Plant Cell 21(4):1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esau K (1977) Anatomy of Seed Plants, 2nd edn. New York, John Wiley and Sons.

    Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  CAS  PubMed  Google Scholar 

  • Fahn A (1990) Plant Anatomy. 4th Ed. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Fenart S, Ndong YP, Duarte J et al (2010) Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genomics 11:592

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152. doi:10.1199/tab.0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KG (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda H (1992) Tracheary element formation as a model system of cell-differentiation. Int Rev Cytol 136:289–332

    Article  CAS  Google Scholar 

  • Gerttula S, Zinkgraf M, Muday G, Lewis D, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A (2015) Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27:10.1105/tpc.15.00531

  • Goecks J, Nekrutenko A, Taylor J; The Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed  PubMed Central  Google Scholar 

  • Goff L, Trapnell C, Kelley D (2013) cummeRbund: Analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data. R package version 2.12.0.

  • Gorshkova TA, Wyatt SE, Salnikov VV, Gibeaut DM, Ibragimov MR, Lozovaya VV, Carpita NC (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorshkova TA, Chemikosova SB, Lozovaya VV, Carpita NC (1997) Turnover of galactans and other cell wall polysaccharides in developing flax plants. Plant Physiol 114:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorshkova TA, Sal’nikov VV, Chemikosova SB, Ageeva MV, Pavlencheva NV, van Dam JEG (2003) The snap point: a transition point in Linum usitatissimum bast fiber development. Ind Crop Prod 18:213–221

  • Gorshkova TA, Gurjanov OP, Mikshina PV, Ibragimova NN, Mokshina NE, Salnikov VV, Ageeva MV, Amenitskii SI, Chernova TE, Chemikosova SB (2010) Specific type of secondary cell wall formed by plant fibers. Russ J Plant Physiol 57:328–341

    Article  CAS  Google Scholar 

  • Gorshkova T, Brutch N, Chabbert B, Deyholos M, Hayashi T, Lev-Yadun S, Mellerowicz EJ, Morvan C, Neutelings G, Pilate G (2012) Plant fiber formation: state of the art, recent and expected progress, and open questions. Cr Rev. Plant Sci 31(3):201–228

    Article  CAS  Google Scholar 

  • Gorshkova T, Mokshina N, Chernova T et al (2015) Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169:2048–2063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goulao LF, Vieira-Silva S, Jackson PA (2011) Association of hemicelluloseand pectin-modifying gene expression with Eucalyptus globulus secondary growth. Plant Physiol Biochem 49:873–881

    Article  CAS  PubMed  Google Scholar 

  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to cupper. New Phytol 59:369–381

    Article  Google Scholar 

  • Hamaguchi A, Yamashino T, Koizumi N, Kiba T, Kojima M, Sakakibara H, Mizuno T (2008) A small subfamily of Arabidopsis RADIALIS-LIKE SANT/MYB genes: a link to HOOKLESS1-ediated signal transduction during early morphogenesis. Biosci Biotechnol Biochem 72(10):2687–2696

    Article  CAS  PubMed  Google Scholar 

  • Hamilton ES, Schlegel AM, Haswell ES (2015) United in Diversity: Mechanosensitive Ion Channels in Plants. Annu Rev Plant Biol 66:113–137

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Kaida R, Kaku T, Baba K (2010) Loosening xyloglucanprevents tensile stress in tree stem bending but accelerates the enzymatic degradation of cellulose. Russ J Plant Physiol 57:316–320

    Article  CAS  Google Scholar 

  • Healey AL, Lee DJ, Furtado A, Simmons BA, Henry RJ (2015) Efficient Eucalypt cell wall deconstruction and conversion for sustainable lignocellulosic biofuels. Front Bioeng Biotechnol 3:190

  • Hedrich R (2012) Ion Channels in Plants. Physiol Rev 92(4):1777–1811

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobson N, Roach MJ, Deyholos MK (2010) Gene expression in tension wood and bast fibres. Russ J of Plant Physiol 5:321–327

    Article  Google Scholar 

  • Hotte NSC, Deyholos MK (2008) A flax fibre proteome: identification of proteins enriched in bast fibres. BMC Plant Biol 8:52

  • Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:71. doi:10.1186/1471-2229-10-71

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacob-Wilk D, Kurek I, Hogan P, Delmer DP (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 103:12191–12196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Do J, Moon D, Noh EW, Kim W, Kwon M (2011) EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation. Planta 234:959–977

    Article  CAS  PubMed  Google Scholar 

  • Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucl Acids Res 42(D1):D1182–D1187

  • Jones DM, Murray CM, Ketelaar KDJ, Thomas JJ, Villalobos JA, Wallace IS (2016) The emerging role of protein phosphorylation as a critical regulatory mechanism controlling cellulose biosynthesis. Front Plant Sci 7:684

    PubMed  PubMed Central  Google Scholar 

  • Kader JC (1996) Lipid transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant and Cell Physiol 42:677–685

  • Kaku T, Serada S, Baba K, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-Layer in poplar tension wood. J Wood Sci 55:250–257

    Article  CAS  Google Scholar 

  • Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. doi:10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Wightman R, Atanassov I, Gupta A, Hurst CH, Hemsley PA, Turner S (2016) S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science 353:166–169

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Jung HJ, Kang H, Kim SY (2012) Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol 53(4):673–686

    Article  CAS  PubMed  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-\Delta\Delta{{\text{C}}}_{\text{T}}}\)method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Liwanag AJM, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, Oikawa A, Andersen MCF, Clausen MH, Scheller HV (2012) Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. Plant Cell 24:5024–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love GD, Snape CE, Jarvis MC, Morrison IM (1994) Determination of phenolic structures in flax fibre by solid state 13C NMR. Phytochem 35:489–492

  • Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, Shoue DA, Carpita NC, Reiter W-D (2003) The MUR3 gene of Arabidopsis thaliana encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonough MA, Kadirvelraj R, Harris P, Poulsen JC, Larsen S (2004) Rhamnogalacturonan lyase reveals a unique three-domain modular structure for polysaccharide lyase family 4. FEBS Lett 565:188–194

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63:551–565

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102:659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikshina PV, Gurjanov OP, Mukhitova FK, Petrova AA, Shashkov AS, Gorshkova TA (2012) Structural details of pectic galactan from the secondary cell walls of flax (Linum usitatissimum L.) phloem fibres. Carbohydr Polym 87:853–861

    Article  CAS  Google Scholar 

  • Mikshina PV, Petrova AA, Faizullin DA, Zuev YF, Gorshkova TA (2015a) Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties. Biochemistry-Moscow 80(7):915–924

  • Mikshina PV, Petrova AA, Gorshkova TA (2015b) Functional diversity of rhamnogalacturonans I. Russ. Chem. Bulletin 64(5):1014–1023

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  CAS  PubMed  Google Scholar 

  • Mizrachi E, Maloney VJ, Silberbauer J, Hefer CA, Berger DK, Mansfield SD, Myburg AA (2015) Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus. New Phytol 206:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Mokshina NE, Ibragimova NN, Salnikov VV, Amenitskii SI, Gorshkova TA (2012) Galactosidase of plant fibers with gelatinous cell wall: Identification and localization. Russ J Plant Physiol 59(2):246–254

    Article  CAS  Google Scholar 

  • Mokshina N, Gorshkova T, Deyholos MK (2014) Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS ONE 9(6):e97949

    Article  PubMed  PubMed Central  Google Scholar 

  • Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Building flax fibres: more than brick in the walls. Plant Physiol Biochem 41:935–944

    Article  CAS  Google Scholar 

  • Muñoz C, Baeza J, Freer J, Mendonça RT (2011) Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. J Ind Microbiol Biotechnol 38:1861–1866

    Article  PubMed  Google Scholar 

  • Nieuwland J, Feron R, Huisman BA, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17:2009–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa A, Joshi HJ, Rennie EA, Ebert B, Manisseri C, Heazlewood JL, Scheller HV (2010) An integrative approach to the identification of Arabidopsis and rice genes involved in xylan and secondary wall development. PLoS ONE 5:e15481

    Article  PubMed  PubMed Central  Google Scholar 

  • Orford SJ, Timmis JN (2000) Expression of a lipid transfer protein gene family during cotton fibre development. Biochim Biophys Acta 1483(2):275–284

  • Paux E, Carocha V, Marques C, de Sousa AM, Borralho N, Sivadon P, Grima-Pettenati J (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167:89–100

    Article  CAS  PubMed  Google Scholar 

  • Pilate G, Dejardin A, Laurans F, Leple J-C (2004) Tension wood as a model for functional genomics of wood formation. New Phytol 164:63–72

    Article  CAS  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochem 57:929–967

  • Roach MJ, Deyholos MK (2007) Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Mol Genet and Genom 278:149–165

    Article  Google Scholar 

  • Roach MJ, Mokshina NY, Badhan A, Snegireva AV, Hobson N, Deyholos MK, Gorshkova TA (2011) Development of cellulosic secondary walls in flax fibers requires beta-galactosidase. Plant Physiol 156:1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen TA, Blomqvist K, Edqvist J (2016) Lipid transfer proteins: classification, nomenclature, structure, and function. Planta 244(5):971–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salnikov VV, Ageeva MV, Gorshkova TA (2008) Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall. Protoplasma 233:269–273

    Article  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288(5471):1613–1166

    Article  CAS  PubMed  Google Scholar 

  • Schwerdt JG, MacKenzie K, Oehme D et al (2015) Evolutionary dynamics of the cellulose synthase gene superfamily in grasses. Plant Physiol 168:968–983

    Article  PubMed  PubMed Central  Google Scholar 

  • SEQC/MAQC-III Consortium (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32(9):903–914

    Article  Google Scholar 

  • Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal TW, Gaudinier A et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–575

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Blaesing OE, Gibon Y, Nagel A, Meyer S, Krueger P, Selbig J, Mueller LA, Rhee SY, Stitt M (2004) Mapman: a user-driven tool to display genomics datasets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Updegraff DM (1969) Semi-micro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA 107:22338–22343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZW, Hobson N, Galindo L et al (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  Google Scholar 

  • Wendel JF, Cronn RC, Alvarez I, Liu B, Small RL, Senchina DS (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352

    Article  CAS  PubMed  Google Scholar 

  • Wobbes B (2004) Control of plant carbohydrate partitioning by the Arabidopsis thaliana ATB2 bZIP transcription factor gene. Dissertation, University of Utrecht, Niederlande

  • Yapo BM (2011) Rhamnogalacturonan-I: A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev 51:391–413

  • Yilmaz ND (2015) Agro-residual fibers as potential reinforcement elements for biocomposites. In: Thakur VJ (ed) Lignocellulosic Polymer Composites: Processing, Characterization, and Properties. Scrivener Publishing, MA, pp 233–270

    Google Scholar 

  • Zhong R, Ye Z-H (2014) Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci 229:193–207

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Peña MJ, Zhou GK, Nairn CJ, Wood-Jones A, Richardson EA, Morrison WH 3rd, Darvill AG, York WS, Ye ZH (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390–3408

Download references

Acknowledgements

This work was partially supported by grants of the Russian Foundation for Basic Research (#14-04-01778; RNA-Seq of isolated fibres, qRT-PCR experiments), the Russian Science Foundation (#16-14-10256; RNA-Seq of top and middle parts of flax stem, 14C-distribution experiments, bioinformatics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Gorshkova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, O., Mokshina, N., Gorshkov, V. et al. Transcriptome portrait of cellulose-enriched flax fibres at advanced stage of specialization. Plant Mol Biol 93, 431–449 (2017). https://doi.org/10.1007/s11103-016-0571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0571-7

Keywords

Navigation