Skip to main content
Log in

Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85–95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguayo MG, Quintupill L, Castillo R, Baeza J, Freer J, Mendonça R (2010) Determination of differences in anatomical and chemical characteristics of tension and opposite wood of 8-year old Eucalyptus globulus. Maderas Cienc Tecnol 12(3):241–251

    Article  CAS  Google Scholar 

  2. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  3. Aoyama W, Matsumura A, Tsutsumi Y, Nishida T (2001) Lignification and peroxidase in tension wood of Eucalyptus viminalis seedlings. J Wood Sci 47:419–424

    Article  CAS  Google Scholar 

  4. Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonça R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D.Don to ethanol. Enzyme Microb Technol 43:214–219

    Article  CAS  Google Scholar 

  5. Baba K, Ona T, Takabe K, Itoh T, Ito K (1996) Chemical and anatomical characterization of the tension wood of Eucalyptus camaldulensis L. Mokuzai Gakkaishi 42:795–798

    CAS  Google Scholar 

  6. Bamber RK (2001) A general theory for the origin of growth stresses in reaction wood: how trees stay upright. IAWA J 22:205–212

    Google Scholar 

  7. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93

    PubMed  CAS  Google Scholar 

  8. Clair B, Alméras T, Yamamoto H, Okuyama T, Sugiyama J (2006) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91:1128–1137

    Article  PubMed  CAS  Google Scholar 

  9. Clair B, Thibaut B (2001) Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J 22:121–131

    Google Scholar 

  10. Fissore A, Carrasco L, Reyes P, Rodriguez J, Freer J, Mendonça R (2010) Evaluation of a combined brown rot decay-chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips. J Ind Microbiol Biotechnol 37(9):893–900

    Article  PubMed  CAS  Google Scholar 

  11. Goyal GC, Lora JH, Pye EK (1992) Autocatalyzed organosolv pulping of hardwoods—effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 75(2):110–116

    CAS  Google Scholar 

  12. Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulose substrates. Bio Technol 3:155–160

    CAS  Google Scholar 

  13. Guerra A, Elissetche J, Norambuena M, Freer J, Valenzuela S, Rodríguez J, Balocchi C (2008) Influence of lignin structural on Eucalyptus globulus kraft pulping. Ind Eng Chem Res 47:8542–8549

    Article  CAS  Google Scholar 

  14. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  15. Joseleau JP, Imai K, Kuroda K, Ruel K (2004) Detection and in situ characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  16. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  PubMed  CAS  Google Scholar 

  17. Kim Y, Yu A, Han M, Choi GW, Chung B (2010) Ethanosolv pretreatment of barley straw with iron(III) chloride for enzymatic saccharification. J Chem Technol Biotechnol 85:1494–1498

    CAS  Google Scholar 

  18. Kumar P, Barret DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass foe efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  19. Lange JP (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels Bioprod Bioref 1:39–48

    Article  CAS  Google Scholar 

  20. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  PubMed  CAS  Google Scholar 

  21. McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76(8):186–193

    CAS  Google Scholar 

  22. Mendonça RT, Jara JF, González V, Elissetche JP, Freer J (2008) Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323–1330

    Article  PubMed  Google Scholar 

  23. Muñoz C, Mendonça R, Baeza J, Berlin A, Saddler J, Freer J (2007) Bioethanol production from bio-organosolv pulps of Pinus radiata and Acacia dealbata. J Chem Technol Biotechnol 82:767–774

    Article  Google Scholar 

  24. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  PubMed  CAS  Google Scholar 

  25. Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leplé JC, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. Comptes Rendus Biol 327(9–10):889–901

    Article  CAS  Google Scholar 

  26. Sundberg A, Sundberg K, Lillandi C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp by acid methanolysis and gas chromatography. Nordic Pulp Paper Res J 11:216–226

    Article  CAS  Google Scholar 

  27. Sundquist J (1999) Organosolv pulping, in chemical pulping. In: Gullichsen J, Fogelbolm CJ (eds) Fapet Oy, Helsinki, pp 411–426

  28. Yoshida M, Ohta H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia). J Wood Sci 48:99–105

    Article  CAS  Google Scholar 

  29. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from FONDECYT (postdoctoral grant 3090023 and regular grant 1080105) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Muñoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, C., Baeza, J., Freer, J. et al. Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. J Ind Microbiol Biotechnol 38, 1861–1866 (2011). https://doi.org/10.1007/s10295-011-0975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0975-y

Keywords

Navigation