Skip to main content

Advertisement

Log in

Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant’s resistance to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  PubMed  CAS  Google Scholar 

  • Afzal AJ, Lightfoot DA (2007) Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis. Pro Exp Pur 53:346–355

    Article  CAS  Google Scholar 

  • Agüero CB, Uratsu SL, Greve C, Powell AT, Labavitch JM, Meredith CP, Dandekar AM (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    Article  PubMed  Google Scholar 

  • Albersheim P, Anderson AJ (1971) Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA 68:1815–1819

    Article  PubMed  CAS  Google Scholar 

  • An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008) Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78

    Article  PubMed  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed  CAS  Google Scholar 

  • Asselbergh B, Achuo AE, Höfte M, Van Gijsegem F (2008) Abscisic acid de ficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24

    PubMed  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Bergmann CW, Ito Y, Singer D, Albersheim P, Darvill AG, Benhamou N, Nuss L, Salvi G, Cervone F, De Lorenzo G (1994) Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J 5:625–634

    Article  PubMed  CAS  Google Scholar 

  • Bezier A, Lambert B, Baillieul F (2002) Cloning of a grapevine Botrytis-responsive gene that has homology to the tobacco hypersensitivity-related hsr203. J Exp Bot 53:2279–2280

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Centis S, Guillas I, Séjalon N, Tugayé MTE, Dumas B (1997) Endopolygalacturonase genes from Colletotrichum lindemuthianum: cloning of CLPG2 and comparison of its expression to that of CLPG1 during saprophytic and parasitic growth of the fungus. Mol Plant Microb Interact 10(6):769–775

    Article  CAS  Google Scholar 

  • Cheng Q, Cao YZH, Pan HX, Wang MX, Huang MR (2008) Isolation and characterization of two genes encoding polygalacturonase-inhibiting protein from Populus deltoides. J Genet Genomics 35(10):631–638

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129(2):661–677

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Gong ZZ, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    Article  PubMed  CAS  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cell 17(2):377–380

    CAS  Google Scholar 

  • Cook BJ, Clay RP, Bergmann CW, Albersheim P, Darvil AG (1999) Fungal polygalacturonase exhibit different substrate degradation patterns and differ in their susceptibilities to polygalacturonase-inhibiting proteins. Mol Plant Microb Interact 12(8):703–711

    Article  CAS  Google Scholar 

  • Darvill A, Bergmann C, Cervone F, De Lorenzo G, Ham KS, Spiro MD, York WS, Albersheim P (1994) Oligosaccharins involved in plant growth and host-pathogen interactions. Biochem Soc Symp 60:89–94

    Google Scholar 

  • D’Ovidio R, Anderson OD (1994) Purification and molecular characterization of a soybean polygalacturonase-inhibiting protein. Theor App Genet 88:759–763

    Article  Google Scholar 

  • D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G (2004) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol 135(4):2424–2435

    Article  PubMed  Google Scholar 

  • D’Ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni M, Sella L, Tosi P, Favaron F (2006) The characterization of the soybean polygalacturonase-inhibiting proteins (PGIP) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta 224(3):633–645

    Article  PubMed  CAS  Google Scholar 

  • de Bruxelles GL, Roberts MR (2001) Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20:487–521

    Google Scholar 

  • De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5(4):295–299

    Article  PubMed  Google Scholar 

  • De Lorenzo G, Castoria R, Bellincampi D, Cervone F (1997) Fungal invasion enzymes and their inhibition. In: Carroll G, Tudzynski P (eds) The mycota. Springer, Berlin, pp 61–83

    Google Scholar 

  • De Lorenzo G, Cervone F, Bellincampi D, Caprari C, Clark AJ, Desiderio A, Devoto A, Forrest R, Leckie F, Nuss L, Salvi G (1994) Polygalacturonase, PGIP and oligogalacturonides in cell–cell communication. Biochem Soc Trans 22:396–399

    Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPS) in defense against pathogenic fungi. Ann Rev Phytopathol 39:313–335

    Article  Google Scholar 

  • Dempsey DA, Shah J, Klessig D (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    Article  CAS  Google Scholar 

  • Desiderio A, Aracri B, Leckie F, Mattei B, Salvi G, Tigelaar H, van Roekel JS, Baulcombe DC, Melchers LS, De Lorenzo G, Cervone F (1997) Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris. Mol Plant Microb Interact 10(7):852–860

    Article  CAS  Google Scholar 

  • Devoto A, Clark AJ, Nuss L, Cervone F, De Lorenzo G (1997) Developmental and pathogen-induced accumulation of transcripts of polygalacturonase-inhibiting protein in Phaseolus vulgaris L. Planta 202(3):284–292

    Article  CAS  Google Scholar 

  • Di Matteo A, Federici L, Mattei B, Salvi G, Johnson KA, Savino C, De Lorenzo G, Tsernoglou D, Cervone F (2003) The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA 100(17):10124–10128

    Article  PubMed  CAS  Google Scholar 

  • Di Matteo A, Bonivento D, Tsernoglou D, Federici L, Cervone F (2006) Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. Phytochemistry 67(6):528–533

    Article  PubMed  CAS  Google Scholar 

  • Di C, Zhang M, Xu S, Cheng T, An L (2006) Role of polygalacturonase inhibiting protein in plant defense. Crit Rev Microbiol 32(2):91–100

    Article  PubMed  CAS  Google Scholar 

  • Di C, Li M, Long F, Bai M, Liu YJ, Zheng XL, Xu SJ, Xiang Y, Sun Z, An LZH (2009) Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase-inhibiting protein in Chorispora bungeana. Planta 231(1):169–178

    Article  PubMed  CAS  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1:316–323

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fang BH, Zhang GM, Chi CF, Liu P (2004) The dynamic effects of Colletotrichum capsici f. nicotianae toxin on MDA content and some protective enzymes in tobacco. Aata Phytopathologica Sinica 34(4):27–31

    Google Scholar 

  • Favaron F, D’Ovidio R, Porceddu E, Alghisi P (1994) Purification and molecular characterization of a soybean polygalacturonase-inhibiting protein. Planta 195(1):80–87

    Article  PubMed  CAS  Google Scholar 

  • Favaron F, Castiglioni C, D’Ovidio R, Alghisi P (1997) Polygalacturonase inhibiting proteins from Allium porrum L. and their role in plant tissue against fungal endo-polygalacturonases. Physiol Mol. Plant Pathol 50(6):403–417

    CAS  Google Scholar 

  • Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F (2006) Polygalacturonase inhibiting proteins: players in plant innate immunity. Trends Plant Sci 11(2):65–70

    Article  PubMed  CAS  Google Scholar 

  • Feng JL, Wang K, Liu X, Chen SN, Chen JS (2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene 437(1–2):14–21

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, de Lorenzo G (2003) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Galletti R, Vairo D, de Cervone F, Lorenzo G (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microb Interact 19(8):931–936

    Article  CAS  Google Scholar 

  • Flors V, Ton J, Jakab G, Mauch-Mani B (2005) Abscisic acid and callose: team players in defence against pathogens? J Phytopathol 153:377–383

    Article  CAS  Google Scholar 

  • Frediani M, Cremonini R, Salvi G, Caprari C, Desiderio A (1993) Cytological localization of the PGIP genes in the embryo suspensor cells of Phaseolus vulgaris L. Theor Appl Genet 87(3):369–373

    Article  CAS  Google Scholar 

  • Gomathi V, Gayathri S, Anupama B, Silva JAT, Gnanamanickam SS (2006) Molecular aspects of polygalacturonase-inhibiting proteins (PGIPs) in plant defense. In: Silva JAT (ed) Floriculture, ornamental and plant biotechnology, vol 3. Global Science Books, London, pp 373–379

  • Grüner R, Strompen G, Pfitzner AJP, Pfitzner UM (2003) Salicylic acid and the hypersensitive response initiate distinct signal transduction pathways in tobacco that converge on the as-1-like element of the PR-1a promoter. Euro J Biochem 270(24):4876–4886

    Article  CAS  Google Scholar 

  • Hegedus DD, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR (2008) Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta 228(2):241–253

    Article  PubMed  CAS  Google Scholar 

  • Hu CG, Honda C, Kita M, Zhang Z, Tsuda T, Moriguchi TA (2002) Simple protocol for RNA isolation from fruit trees containing high levels of polysaccharides and polyphenol compounds. Plant Mol Bio Report 20(1):69

    Article  Google Scholar 

  • Hwang BH, Bae H, Lim HS, Kim KB, Kim SJ, Im MH, Park BS, Kim DS, Kim J (2010) Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. Carotovorum. Plant Cell Tiss Organ Cult 103(3):293–305

    Article  CAS  Google Scholar 

  • Isshiki A, Akimitsu K, Yamamoto M, Yamamoto H (2001) Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but Not Brown Spot Caused by Alternaria alternata. Mol Plant Microb Interact 14(6):749–757

    Article  CAS  Google Scholar 

  • Janni M, Di Giovanni M, Roberti S, Capodicasa C, D’Ovidio R (2006) Characterization of expressed PGIP genes in rice and wheat reveals similar extent of sequence variation to dicto PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet 113(7):1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, Lorenzo GD, D’Ovido R (2008) The Expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microb Interact 21(2):171–177

    Article  CAS  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    Article  PubMed  CAS  Google Scholar 

  • Johnston DJ, Ramanathan V, Williamson B (1993) A protein from immature raspberry fruits which inhibits endopolygalacturonases from Botrytis cinerea and other micro-organisms. J Exp Bot 44(5):971–976

    Article  CAS  Google Scholar 

  • Jones JDG (2001) Putting knowledge of plant disease resistance genes towork. Curr Opin Plant Biol 4:281–287

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Jones JDG (1997) The roles of leucine-rich repeat proteins in plant defences. Adv Bot Res 24:89–167

    Article  Google Scholar 

  • Jones AL, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11(12):2291–2302

    PubMed  CAS  Google Scholar 

  • Joubert DA, Slaughter AR, Kemp G, Becker VWJ, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA (2006) The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 15(6):687–702

    Article  PubMed  CAS  Google Scholar 

  • Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JA (2007) A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol Plant Microb Interact 20(4):392–402

    Article  CAS  Google Scholar 

  • Karr AL, Albersheim P (1970) Polysaccharide-degrading enzymes are unable to attack plant cell walls without prior action by a “all-modifying enzyme”. Plant Physiol 46:69–80

    Article  PubMed  CAS  Google Scholar 

  • Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JA, van Kan JA (2005) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43(2):213–225

    Article  PubMed  CAS  Google Scholar 

  • Kemp G, Stanton L, Bergmann CW, Clay RP, Albersheim P, Darvill A (2004) Polygalacturonase-inhibiting proteins can function as activators of polygalacturonase. Mol Plant Microb Interact 17:888–894

    Article  CAS  Google Scholar 

  • Kim ES, Hwang BK (1992) Virulence to Korean pepper cultivars of isolates of Phytophthora capsici from different geographic areas. Plant Dis 76:486–489

    Article  Google Scholar 

  • Kobe B, Deisenhofer JZ (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19(10):415–421

    Article  PubMed  CAS  Google Scholar 

  • Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H, Himeno M, Kagiwada S, Okano Y, Namba S (2010) Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol Plant Microb Interact 23(3):283–293

    Article  CAS  Google Scholar 

  • Kothari H, Kumar P, Singh N (2006) Prokaryotic expression, purification, and polyclonal antibody production against a novel drug resistance gene of Leishmania donovani clinical isolate. Protein Expr Purif 45:15–21

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M, Tsuge T (1994) Nuclear ribosomal DNA variation and pathogenic specialization in Alternaria fungi known to produce host-specific toxins. Appl Environ Microbiol 60(9):3055–3062

    PubMed  CAS  Google Scholar 

  • Leckie F, Mattei B, Capodicasa C, Hemmings A, Nuss L, Aracri B, De Lorenzo G, Cervone F (1999) The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. Eur Mol Biol Organ 18(9):2352–2363

    CAS  Google Scholar 

  • Li R, Rimmer R, Yu M, Sharpe AG, Seguin-Swartz G, Lydiate D, Hegedus DD (2003) Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta 217(2):299–308

    PubMed  CAS  Google Scholar 

  • Liang FS, Zhang KCH, Zhou ChJ, Kong FN, Li J, Wang B (2005) Cloning, characterization and expression of the gene encoding polygalacturonase-inhibiting proteins (PGIPs) of peach (Prunus persica L.). Plant Sci 168:481–486

    Article  CAS  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25(3):674–681

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schi VM, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31(6):777–786

    Article  PubMed  CAS  Google Scholar 

  • Machinandiarena MF, Olivieri FP, Daleo GR, Oliva CR (2001) Isolation and characterization of a polygalacturonase-inhibiting protein from potato leaves: accumulation in response to salicylic acid, wounding and infection. Plant Physiol Biochem 39:129–136

    Article  CAS  Google Scholar 

  • Manfredini C, Sicilia F, Ferrari S, Pontiggia D, Salvi G, Caprai C, Lorito M, De Lorenzo G (2006) Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol Mol Plant Pathol 67:108–115

    Article  CAS  Google Scholar 

  • Mariotti L, Casasoli M, Migheli Q, Balmas V, Caprari C, De Lorenzo G (2008) Reclassification of Fusarium verticillioides (syn. F. moniliforme) strain FC-10 as F. phyllophilum. Mycol Res 112(9):1010–1011

    PubMed  Google Scholar 

  • Mattei B, Bernalda MS, Federici L, Roepstorff P, Cervone F, Boffi A (2001) Secondary structure and post-translational modifications of the leucine-rich repeat protein PGIP (polygalacturonase-inhibiting protein) from Phaseolus vulgaris. Biochemistry 40(2):569–576

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • Mehli L, Kjellsen TD, Dewey FM, Hietala AM (2005) A case study from the interaction of strawberry and Botrytis cinerea highlights the beneWts of comonitoring both partners at genomic and mRNA level. New Phytol 168(2):465–474

    Article  PubMed  CAS  Google Scholar 

  • Morris PC, Kumar A, Bowles DJ, Cuming AC (1990) Osmotic stress and abscisic acid regulate the expression of the Em gene of wheat. Eur J Biochem 190:625–630

    Article  PubMed  CAS  Google Scholar 

  • Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21(1):87–116

    Article  CAS  Google Scholar 

  • Nothnagel EA, McNeil M, Albersheim P, Dell A (1983) Hostpathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71(4):916–926

    Article  PubMed  CAS  Google Scholar 

  • Nuss L, Mah A, Clark AJ, Grisvard J, Dron M (1996) Differential accumulation of polygalacturonase-inhibiting protein (PGIP) mRNA in two near-isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum. Physiol Mol Plant Patho 48(2):83–89

    Article  CAS  Google Scholar 

  • Oeser B, Heidrich PM, Muller U, Tudzynski P, Tenberge KB (2002) Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet Biol 36(3):176–186

    Article  PubMed  CAS  Google Scholar 

  • Oke OA (1989) Extracellular enzymes of Colltotrichum nicotianae causing tobacco leaf anthracnose in Nigeria. J Phytopath 127(4):296–304

    Article  CAS  Google Scholar 

  • Pietro AD, Roncero MIG (1998) Cloning, expression, and role in pathogenicity og pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microb Interact 11(1):91–98

    Article  Google Scholar 

  • Powell AL, Van Kan J, Ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microb Interact 13:942–950

    Article  CAS  Google Scholar 

  • Ramanathan V, Simpsom C, Thow G, Iannetta P, McNicol R, Williamson B (1997) cDNA cloning and expression of polygalacturonaseinhibiting proteins (PGIPs) from red raspberry (Rubus idaeus). J Exp Bot 48:1185–1193

    Article  CAS  Google Scholar 

  • Ramonel KM, Somerville S (2002) The genomics parade of defense responses: to infinity and beyond. Curr Opin Plant Biol 5(4):291–294

    Article  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12(5):707–720

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sathiyaraj G, Srinivasan S, Subramanium S, Kim YJ, Kim YJ, Kwon WS, Yang DC (2010) Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng. Mol Biol Rep 37(7):3445–3454

    Article  PubMed  CAS  Google Scholar 

  • Schaart JG, Mehli L, Schouten HJ (2005) Quantification of allele-specific expression of a gene encoding strawberry polygalacturonase-inhibiting protein (PGIP) using pyrosequencing. Plant J 41(3):493–500

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97(21):11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Sella L, Castiglioni C, Roberti S, D’Ovidio R, Favaron F (2004) An endo-polygalacturonase (PG) of Fusarium moniliforme escaping inhibition by plant polygalacturonase-inhibiting proteins (PGIPs) provides new insights into the PG–PGIP interaction. FEMS Microbiol Lett 240:117–124

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goffl SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14(12):2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Sharrock KR, Labavitch JM (1994) Polygalacturonase inhibitors of Bartlett pear fruits: differential effects on Botrytis cinerea polygalacturonase isozymes, and influence on products of fungal hydrolysis of pear cell walls and an ethylene induction in cell culture. Physiol Mol Plant Pathol 45(4):305–319

    Article  CAS  Google Scholar 

  • Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63(9):3548–3552

    PubMed  CAS  Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis toll interleukin1 receptor–nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    Article  PubMed  CAS  Google Scholar 

  • Slavov S, Mayama S, Atanassov A (2004) Some aspects of epidemiology of Alternaria alternata tobacco pathotype. Biotechnol Biotechnol Equip 18(2):28–33

    Google Scholar 

  • Song WW, Ma XR, Tan H, Zhou JY (2011) Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiol Biochem 49:693–700

    Article  PubMed  CAS  Google Scholar 

  • Spadoni S, Zabotina O, Di Matteo A, Mikkelsen JD, Cervone F, De Lorenzo G, Mattei B, Bellincampi D (2006) Polygalacturonase inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol 141(2):557–564

    Article  PubMed  CAS  Google Scholar 

  • Stotz HU, Contos JJA, Powell ALT, Bennett AB, La-bavitch JM (1994) Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Plant Mol Biol 25:607–617

    Google Scholar 

  • Stotz HU, Powell ALT, Damon SE, Greve LC, Bennett AB, Labavitch JM (1993) Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv. Bartlett. Plant Physiol 102(1):133–138

    Article  PubMed  CAS  Google Scholar 

  • Stotz HU, Bishop JG, Bergmann CW, Koch M, Albersheim P, Darvill AG, Labavitch JM (2000) Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol Mol Plant Pathol 56:117–139

    Article  CAS  Google Scholar 

  • Sun WX, Jia YJ, Feng BZ, O’Neill NR, Zhu XP, Xie BY, Zhang XG (2009) Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici. Genesis 47(8):535–544

    Article  PubMed  CAS  Google Scholar 

  • Taipalensuu J, Andreasson E, Eriksson S, Rask L (1997) Regulation of the wound-induced myrosinase-associated protein transcript in Brassica napus plants. Eur J Biochem 247(3):963–971

    Article  PubMed  CAS  Google Scholar 

  • Taylor RJ, Secor GA (1988) An improved diffusion assay for quantifying the polygalacturonase content of Erwinia culture filtrates. Phytopathology 78(8):1101–1103

    Article  CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J, Van Kam JA (1998) The Endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microb Interact 11(10):1009–1016

    Article  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Mauch-Mani B (2004) β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130

    Article  PubMed  CAS  Google Scholar 

  • Torto TA, Rauser L, Kamoun S (2002) The Pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Curr Genet 40(6):385–390

    Article  PubMed  CAS  Google Scholar 

  • Toubart P, Desiderio A, Salvi G, Cervone F, Daroda L, De Lorenzo G (1992) Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Plant J 2(3):367–373

    PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Weurman C (1953) Pectinase inhibitors in pears. Acta Bot Neerl 2:107–121

    CAS  Google Scholar 

  • Wiese J, Kranz T, Schubert S (2004) Induction of pathogen resistance in barley by abiotic stress. Plant Biol 6:529–536

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Yan HZ, Liu LF, Liou RF (2008) Functional characterization of a gene family encoding polygalacturonases in Phytophthora parasitica. Mol Plant Microb Interact 21(4):480–489

    Article  CAS  Google Scholar 

  • Yang B, Yajima W, Das D, Suresh MR, Kav NNV (2009) Isolation, expression and characterization of two single-chain variable fragment antibodies against an endo-polygalacturonase secreted by Sclerotinia sclerotiorum. Pro Exp Pur 64:237–243

    Article  CAS  Google Scholar 

  • Yao C, Conway WS, Ren R, Smith D, Ross GS, Sams CE (1999) Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection. Plant Mol Biol 39:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Zhang GM, Wang ZF, Chen RT, Liu YR (1994) On the pathogenicity of the tobacco black death disease. Aata Phytopathol Sinica 24(3):367–371

    Google Scholar 

  • Zhang R, Yang D, Zhou CH, Cheng K, Liu ZH, Chen L, Fang L, Xie P (2012) β-Actin as a loading control for plasma-based Western blot analysis of major depressive disorder patients. Anal Biochem 427:116–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by The Project Graveness Gene of China (2009ZX08009-050B). National Natural Science Foundation of China, NSFC (30871620). We very thank Gary J. Samuels for assisting in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuguo Zhang.

Additional information

Xiuju Wang and Xiaoping Zhu contributed equally to the article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhu, X., Tooley, P. et al. Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. Plant Mol Biol 81, 379–400 (2013). https://doi.org/10.1007/s11103-013-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0007-6

Keywords

Navigation