Skip to main content
Log in

Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The canonical Gα subunit of the heterotrimeric G protein complex from wheat (Triticum aestivum), GA3, and the calcium-binding protein, Clo3, were revealed to interact both in vivo and in vitro and Clo3 was shown to enhance the GTPase activity of GA3. Clo3 is a member of the caleosin gene family in wheat with a single EF-hand domain and is induced during cold acclimation. Bimolecular Fluorescent Complementation (BiFC) was used to localize the interaction between Clo3 and GA3 to the plasma membrane (PM). Even though heterotrimeric G-protein signaling and Ca2+ signaling have both been shown to play a role in the response to environmental stresses in plants, little is known about the interaction between calcium-binding proteins and Gα. The GAP activity of Clo3 towards GA3 suggests it may play a role in the inactivation of GA3 as part of the stress response in plants. GA3 was also shown to interact with the phosphoinositide-specific phospholipase C, PI-PLC1, not only in the PM but also in the endoplasmic reticulum (ER). Surprisingly, Clo3 was also shown to interact with PI-PLC1 in the PM and ER. In vitro analysis of the protein–protein interaction showed that the interaction of Clo3 with GA3 and PI-PLC1 is enhanced by high Ca2+ levels. Three-way affinity characterizations with GA3, Clo3 and PI-PLC1 showed the interaction with Clo3 to be competitive, which suggests that Clo3 may play a role in the Ca2+-triggered feedback regulation of both GA3 and PI-PLC1. This hypothesis was further supported by the demonstration that Clo3 has GAP activity with GA3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assmann SM (2005) G proteins go green: a plant G protein signaling FAQ sheet. Science 310:71–73

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  • Bisht NC, Jez JM, Pandey S (2011) An elaborate heterotrimeric G protein family from soybean expands the diversity of plant G-protein networks. New Phytol 190:35–48

    Article  CAS  Google Scholar 

  • Blumward E, Aharon GS, Lam BCH (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci 3:342–346

    Article  Google Scholar 

  • Chen JG (2008) Heterotrimeric G-protein signaling in Arabidopsis: puzzling G-protein-coupled receptor. Plant Signal Behav 3:1042–1045

    Article  PubMed  Google Scholar 

  • Chen JG, Gao Y, Jones AM (2006) Differential roles of arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol 141:887–897

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molec Cell 29:159–165

    Article  CAS  Google Scholar 

  • Claros MG, Von-Heijne G (1994) TopPred II, an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686

    PubMed  CAS  Google Scholar 

  • Coonrod SA, Naaby-Hansen S, Shetty J, Shibahara H, Chen M, White JM, Herr JC (1999) Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. Dev Biol 207:334–349

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Gardner MG, Hotta CT, Hubbard KE, Dalchau N, Love J, Assie J, Robertson FC, Jakobsen MK, Gonçalves J, Sanders D, Webb AAR (2007) The Arabidopsis Circadian Clock incorporates a cADPR-based feedback loop. Science 318:1789–1792

    Article  PubMed  CAS  Google Scholar 

  • El-Maarouf H, Lameta A, Gareil M, Zuily-Fodil Y, Pham-Thi A (2001) Cloning and expression under drought of cDNAs coding for two PI-PLCs in cowpea leaves. Plant Physiol Biochem 39:167–172

    Article  CAS  Google Scholar 

  • Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM (2008) Abscisic acid regulation of guard-cell K+ and anion channels in G beta- and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci USA 105:8476–8481

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hirratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  PubMed  CAS  Google Scholar 

  • Grigston JC, Osuna D, Scheible WR, Liu C, Stitt M, Jones AM (2008) d-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett 582:3577–3584

    Article  PubMed  CAS  Google Scholar 

  • Gulick PJ, Drouin S, Yu Z, Danyluk J (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    Article  PubMed  CAS  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    Article  PubMed  CAS  Google Scholar 

  • Heinze M, Steighardt J, Gesell A, Schwartze W, Roos W (2007) Regulatory interaction of the Galpha protein with phospholipase A2 in the plasma membrane of Eschscholzia californica. Plant J 52:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pinzon I, Pateland K, Murphy DJ (2001) The Brassica napus calcium-binding protein, caleosin, has distinct endoplasmic reticulum- and lipid body-associated isoforms. Plant Physiol Biochem 39:615–622

    Article  CAS  Google Scholar 

  • Hossain MS, Koba T, Harada K (2003) Cloning and characterization of two full-length cDNAs, TaGA1 and TaGA2, encoding G-protein alpha subunits expressed differentially in wheat genome. Genes Genet Syst 78:127–138

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genom 7:149

    Article  Google Scholar 

  • Hu CD, Kerppola TK (2005) Direct visualization of protein interactions in living cells using bimolecular fluorescence complementation analysis. In: Adams P, Golemis E (eds) Protein–protein interactions, vol 34. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–20

    Google Scholar 

  • Huang CH, Crain RC (2009) Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton. Planta 230:925–933

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Taylor JP, Chen JG, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    Article  PubMed  CAS  Google Scholar 

  • Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS (2007) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104:17317–17322

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572–578

    Article  PubMed  CAS  Google Scholar 

  • Jones JC, Temple BR, Jones AM, Dohlman HG (2011) Functional reconstitution of an atypical G protein heterotrimer and regulator of G protein signaling protein (RGS1) from Arabidopsis thaliana. J Biol Chem 286:13143–13150

    Article  PubMed  CAS  Google Scholar 

  • Kanuru M, Samuel JJ, Balivada LM, Aradhyam GK (2009) Ion-binding properties of Calnuc, Ca2+ versus Mg2+ Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein. FEBS J 276:2529–2546

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Jee K, Myoung L, Ho J, Young B, Byung H, Inhwan H, Woo K (2004) The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinsitide specific phospholipase C whose expression is induced by abiotic stress in mung bean Vigna radiate L. FEBS Lett 556:127–136

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batisti O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed  CAS  Google Scholar 

  • Lapik YR, Kaufman LS (2003) The Arabidopsis cupin domain protein AtPirin 1 interacts with the G protein α-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15:1578–1590

    Article  PubMed  CAS  Google Scholar 

  • Mamillapalli R, Wysolmerski J (2010) The calcium-sensing receptor couples to Galpha(s) and regulates PTHrP and ACTH secretion in pituitary cells. J Endocrinol 204:287–297

    Article  PubMed  CAS  Google Scholar 

  • Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB (2007) Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46:7665–7677

    Article  PubMed  CAS  Google Scholar 

  • Misra S, Yuliang W, Gayatri V, Sopory KS, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669

    Article  PubMed  CAS  Google Scholar 

  • Monroy AF, Dryanova A, Malette B, Oren DH, Ridha Farajalla M, Liu W, Danyluk J, Ubayasena LWC, Kane K, Scoles GS, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409–423

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Irvine RF, Musgrave A (1998) Phospholipid signalling in plants. Biochem Biophys Acta 1389:222–272

    PubMed  CAS  Google Scholar 

  • Nakamura K, Sano H (2009) A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants. Plant Signal Behav 4:26–29

    Article  PubMed  CAS  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  PubMed  CAS  Google Scholar 

  • Nelson KB, Xue C, Andreas N (2007) A multicolored set of in vivo organelle markers for co-localization studied in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Nilson SE, Assmann SM (2010) The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency. Plant Physiol 152:2067–2077

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Göbel C, Capper RG, Saunders N, Feussner I, Knight MR (2009) The alpha-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana. J Exp Bot 60:1991–2003

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Chen JG, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141:234–256

    Article  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Wang RS, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6:372–402

    Article  PubMed  Google Scholar 

  • Partridge M, Murphy D (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    Article  PubMed  CAS  Google Scholar 

  • Ritche S, Gilroy S (2000) Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane. Plant Physiol 124:693–702

    Article  Google Scholar 

  • Song F, Goodman MR (2002) Molecular cloning and characterization of a rice phosphoinositide-specific phospholipase C gene, OsPI-PLC1, that is activated in systemic acquired resistance. Physiol Mol Plant Pathol 61:31–40

    CAS  Google Scholar 

  • Sprang SR (1997) G protein mechanisms: insights form structural analysis. Annu Rev Biochem 66:639–678

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Sauter M (2010) G proteins as regulators in ethylene-mediated hypoxia signaling. Plant Signal Behav 5:375–378

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K (2000) An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol 41:898–903

    Article  PubMed  CAS  Google Scholar 

  • Tardif G, Kane NA, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberte JF (2007) Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol Biol 63:703–718

    Article  PubMed  CAS  Google Scholar 

  • Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11:620–631

    Article  PubMed  CAS  Google Scholar 

  • Todorova R (2009) In vitro interaction between the N-terminus of the Ewing’s sarcoma protein and the subunit of RNA polymerase II hsRPB7. Mol Biol Rep 36:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Tosetti P, Pathak N, Jacob MH, Dunlap K (2003) RGS3 mediates a calcium-dependent termination of G protein signaling in sensory neurons. Proc Natl Acad Sci USA 100:7337–7342

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed  Google Scholar 

  • Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis JM, Ecker JR, Jones AM (2003) The β-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe DC (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Vossen JH, Abd-El-Haliem A, Fradin EF, Berg GC, Ekengren SK, Meijer HJ, Seifi A, Bai Y, Have A, Munnik T, Thomma BP, Joosten MH (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239

    Article  PubMed  CAS  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Hater K, Kudla J (2004) Visualization of protein interaction in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, Kaufman LS (2006) G-protein-coupled receptor 1, G-protein G alpha-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol 140:844–855

    Article  PubMed  CAS  Google Scholar 

  • Weiss CA, White E, Huang H, Ma H (1997) The G protein α subunit (GPα1) is associated with the ER and the plasma membrane in meristematic cells of Arabidopsis and cauliflower. FEBS Lett 407:361–367

    Article  PubMed  CAS  Google Scholar 

  • Willard FS, Siderovski DP (2004) Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1. Methods Enzymol 389:320–338

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Zhai S, Zhenhua S, Aifang Y, Zhang J (2005) Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotech Lett 27:799–804

    Article  CAS  Google Scholar 

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Natural Science and Engineering Research Council of Canada, and the Agricultural Bioproducts Innovation Program of Agriculture and Agri-Food Canada. We thank Alan Jones, North Carolina State University, for kindly providing clones and vectors for control expression and protein–protein interaction. We thank Hugo Zheng, McGill University, for providing control clones for protein–protein interaction. The sequences of the T. aestivum genes described in the manuscript were deposited in GenBank with the following accession numbers: Ga3, HQ020506; PI-PLC1, HM754654; PI-PLC2, HM754653; Clo3, HQ020505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Gulick.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, H.B., Wang, Z., Wright, J.A. et al. Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1. Plant Mol Biol 77, 145–158 (2011). https://doi.org/10.1007/s11103-011-9801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9801-1

Keywords

Navigation