Skip to main content

Advertisement

Log in

Chloramphenicol acetyltransferase as selectable marker for plastid transformation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chloroplast transformation remains a demanding technique and is still restricted to relatively few plant species. The limited availability of selectable marker genes and the lack of selection markers that would be universally applicable to all plant species represent some of the most serious technical problems involved in extending the species range of plastid transformation. Here we report the development of the chloramphenicol acetyltransferase gene cat as a new selectable marker for plastid transformation. We show that, by selecting for chloramphenicol resistance, tobacco chloroplast transformants are readily obtained. Transplastomic lines quickly reach the homoplasmic state (typically in one additional regeneration round), accumulate the chloramphenicol acetyltransferase enzyme to high levels and transmit their plastid transgenes maternally into the next generation. No spontaneous antibiotic resistance mutants appear upon chloramphenicol selection. Several lines of evidence support the assumption that plant mitochondria are also sensitive to chloramphenicol suggesting that the chloramphenicol acetyltransferase may be a good candidate selectable marker for plant mitochondrial transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadabadi M, Ruf S, Bock R (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16:437–448

    Article  PubMed  CAS  Google Scholar 

  • Allison LA, Maliga P (1995) Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J 14:3721–3730

    PubMed  CAS  Google Scholar 

  • Ayliffe MA, Timmis JN (1992) Tobacco nuclear DNA contains long tracts of homology to chloroplast DNA. Theor Appl Genet 85:229–238

    Article  CAS  Google Scholar 

  • Barone P, Zhang X-H, Widholm JM (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [α]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2001) Transgenic chloroplasts in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  PubMed  CAS  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  PubMed  CAS  Google Scholar 

  • Denovan-Wright EM, Nedelcu AM, Lee RW (1998) Complete sequence of the mitochondrial DNA of Chlamydomonas eugametos. Plant Mol Biol 36:285–295

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop H-U (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  PubMed  CAS  Google Scholar 

  • Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenyl transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Article  PubMed  CAS  Google Scholar 

  • Hager M, Biehler K, Illerhaus J, Ruf S, Bock R (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b6f complex. EMBO J 18:5834–5842

    Article  PubMed  CAS  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58:700–754

    PubMed  CAS  Google Scholar 

  • Huang F-C, Klaus SMJ, Herz S, Zou Z, Koop H-U, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    Article  PubMed  CAS  Google Scholar 

  • Karcher D, Kahlau S, Bock R (2008) Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts. RNA 14:217–224

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Maliga P (2001) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Maliga P (2007) Construction of marker-free transplastomic plants. Curr Opin Biotechnol 18:107–114

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nie ZQ, Chang DY, Wu M (1987) Protein-DNA interaction within one cloned chloroplast DNA replication origin of Chlamydomonas. Mol Gen Genet 209:265–269

    Article  PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009a) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Scharff LB, Kreikemeyer B, Bock R (2009b) Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc Natl Acad Sci USA 106:6579–6584

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Karcher D, Bock R (2008a) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R (2008b) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Biehler K, Bock R (2000) A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J Cell Biol 149:369–377

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol Gen Genet 228:316–319

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 104:7003–7008

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Tenson T, Mankin A (2006) Antibiotics and the ribosome. Mol Microbiol 59:1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G (1993) Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr Genet 24:241–247

    Article  PubMed  CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  PubMed  CAS  Google Scholar 

  • Ye G-N, Hajdukiewicz PTJ, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Liu X, Alsheikh M, Park S, Rodermel S (2008) Mutations in suppressor of variegation1, a factor required for normal chloroplast translation, suppress var2-mediated leaf variegation in Arabidopsis. Plant Cell 20:1786–1804

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers A-MI, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of HIV antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Claudia Hasse and Steffen Braune for technical assistance. This work was supported by a grant from the Bundesministerium für Bildung und Forschung (BMBF) to R.B. and by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Bock.

Additional information

Guest Editor: Jacqueline Nugent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Ruf, S. & Bock, R. Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76, 443–451 (2011). https://doi.org/10.1007/s11103-010-9678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9678-4

Keywords

Navigation