Skip to main content
Log in

Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Enzymes of the chalcone synthase (CHS) superfamily catalyze the production of a variety of secondary metabolites in bacteria, fungi and plants. Some of these metabolites have played important roles during the early evolution of land plants by providing protection from various environmental assaults including UV irradiation. The genome of the moss, Physcomitrella patens, contains at least 17 putative CHS superfamily genes. Three of these genes (PpCHS2b, PpCHS3 and PpCHS5) exist in multiple copies and all have corresponding ESTs. PpCHS11 and probably also PpCHS9 encode non-CHS enzymes, while PpCHS10 appears to be an ortholog of plant genes encoding anther-specific CHS-like enzymes. It was inferred from the genomic locations of genes comprising it that the moss CHS superfamily expanded through tandem and segmental duplication events. Inferred exon–intron architectures and results from phylogenetic analysis of representative CHS superfamily genes of P. patens and other plants showed that intron gain and loss occurred several times during evolution of this gene superfamily. A high proportion of P. patens CHS genes (7 of 14 genes for which the full sequence is known and probably 3 additional genes) are intronless, prompting speculation that CHS gene duplication via retrotransposition has occurred at least twice in the moss lineage. Analyses of sequence similarities, catalytic motifs and EST data indicated that a surprisingly large number (as many as 13) of the moss CHS superfamily genes probably encode active CHS. EST distribution data and different light responsiveness observed with selected genes provide evidence for their differential regulation. Observed diversity within the moss CHS superfamily and amenability to gene manipulation make Physcomitrella a highly suitable model system for studying expansion and functional diversification of the plant CHS superfamily of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe I, Sano Y, Takahashi Y, Noguchi H (2003) Site-directed mutagenesis of benzalacetone synthase. The role of the Phe215 in plant type III polyketide synthases. J Biol Chem 278:25218–25226

    Article  CAS  PubMed  Google Scholar 

  • Abe I, Oguro S, Utsumi Y, Sano Y, Noguchi H (2005) Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase. J Am Chem Soc 127:12709–12716

    Article  CAS  PubMed  Google Scholar 

  • Ageez A, Kazama Y, Sugiyama R, Kawano S (2005) Male-fertility genes expressed in male flower buds of Silene latifolia include homologs of anther-specific genes. Genes Genet Syst 80:403–413

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Shibuya M, Liu HM, Ebizuka Y (1999) p-Coumaroyltriacetic acid synthase, a new homologue of chalcone synthase, from Hydrangea macrophylla var. thunbergii. Eur J Biochem 263:834–839

    Article  CAS  PubMed  Google Scholar 

  • Ashton NW, Schulze A, Hall P, Bandurski RS (1985) Estimation of indole-3-acetic acid in gametophytes of the moss, Physcomitrella patens. Planta 164:142–144

    Article  CAS  PubMed  Google Scholar 

  • Atanassov I, Russinova E, Antonov L, Atanassov A (1998) Expression of an anther-specific chalcone synthase-like gene is correlated with uninucleate microspore development in Nicotiana sylvestris. Plant Mol Biol 38:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Bowman ME, Ferrer JL, Schroder J, Noel JP (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194

    Article  CAS  PubMed  Google Scholar 

  • Basile A, Sorbo S, Lopez-Saez JA, Cobianchi RC (2003) Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW (Bryophyta) and Raphanus sativus L (Magnoliophyta). Phytochemistry 62:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29:263–292

    Article  Google Scholar 

  • Brinkmeier E, Geiger H, Zinsmeister HD (1999) Biflavonoids and 4, 2′-epoxy-3-phenylcoumarins from the moss Mnium hornum. Phytochemistry 52:297–302

    Article  CAS  Google Scholar 

  • Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894

    Article  CAS  PubMed  Google Scholar 

  • Dipp NJ, Newman AJ (1989) Evidence that introns arose at proto-splice site. EMBO J 8:2015–2021

    Google Scholar 

  • Domínguez E, Mercado JA, Quesada MA, Heredia A (1999) Pollen sporopollenin: degradation and structural elucidation. Sex Plant Reprod 12:171–178

    Article  Google Scholar 

  • Durbin ML, McCaig B, Clegg MT (2000) Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol Biol 42:79–92

    Article  CAS  PubMed  Google Scholar 

  • Eckermann S, Schröder G, Schmidt J, Strack D, Edrada RA, Helariutta Y, Elomaa P, Kotilainen M, Kilpeläinen I, Proksch P, Teeri TH, Schröder J (1998) New pathway to polyketides in plants. Nature 396:387–390

    Article  CAS  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    Article  CAS  PubMed  Google Scholar 

  • Fliegmann J, Schröder G, Schanz S, Britsch L, Schröder J (1992) Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18:489–503

    Article  CAS  PubMed  Google Scholar 

  • Frugoli JA, McPeek MA, Thomas TL, McClung CR (1998) Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149:355–365

    CAS  PubMed  Google Scholar 

  • Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37:411–421

    CAS  PubMed  Google Scholar 

  • Fukuma K, Neuls ED, Ryberg JM, Suh D-Y, Sankawa U (2007) Mutational analysis of conserved outer sphere arginine residues of chalcone synthase. J Biochem 142:731–739

    Article  CAS  PubMed  Google Scholar 

  • Funa N, Ozawa H, Hirata A, Horinouchi S (2006) Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA 103:6356–6361

    Article  CAS  PubMed  Google Scholar 

  • Funa N, Awakawa T, Horinouchi S (2007) Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa. J Biol Chem 282:14476–14481

    Article  CAS  PubMed  Google Scholar 

  • Geiger H, Markham KR (1992) Campylopusaurone, an auronoflavanone biflavonoid from the mosses Campylopus clavatus and Campylopus holomitrium. Phytochemistry 31:4325–4328

    Article  CAS  Google Scholar 

  • Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, Gottschalk D, Dittmann E, Muller R (2006) Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. Arch Microbiol 185:28–38

    Article  CAS  PubMed  Google Scholar 

  • Häger KP, Müller B, Wind C, Erbach S, Fischer H (1996) Evolution of legumin genes: loss of an ancestral intron at the beginning of angiosperm diversification. FEBS Lett 387:94–98

    Article  PubMed  Google Scholar 

  • Han Y-Y, Ming F, Wang W, Wang J-W, Ye M-M, Shen D-L (2006) Molecular evolution and functional specialization of chalcone synthase superfamily from Phalaenopsis Orchid. Genetica 128:429–438

    Article  CAS  PubMed  Google Scholar 

  • Harashima S, Takano H, Ono K, Takio S (2004) Chalcone synthase-like gene in the liverwort, Marchantia paleacea var. diptera. Plant Cell Rep 23:167–173

    Article  CAS  PubMed  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171

    Article  CAS  PubMed  Google Scholar 

  • Höfig KP, Moyle RL, Putterill J, Walter C (2003) Expression analysis of four Pinus radiata male cone promoters in the heterogeneous host Arabidopsis. Planta 217:858–867

    Article  PubMed  Google Scholar 

  • Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299

    Article  CAS  Google Scholar 

  • Jez JM, Noel JP (2000) Mechanism of chalcone synthase. pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J Biol Chem 275:39640–39646

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Austin MB, Ferrer J, Bowman ME, Schröder J, Noel JP (2000a) Structural control of polyketide formation in plant-specific polyketide synthases. Chem Biol 7:919–930

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Ferrer JL, Bowman ME, Dixon RA, Noel JP (2000b) Dissection of malonyl-coenzyme a decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39:890–902

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Bowman ME, Noel JP (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc Natl Acad Sci USA 99:5319–5324

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Schommer CK, Kim SY, Suh D-Y (2006) Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry 67:2531–2540

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Kim SY, Suh D-Y (2008) Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol Phylogenet Evol 49:691–701

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  CAS  PubMed  Google Scholar 

  • Joshi CP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Kamisugi Y, Cuming AC, Cove DJ (2005) Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res 33:e173

    Article  PubMed  Google Scholar 

  • Kamisugi Y, Schlink K, Rensing SA, Schween G, von Stackelberg M, Cuming AC, Reski R, Cove DJ (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res 34:6205–6214

    Article  CAS  PubMed  Google Scholar 

  • Koes RE, Spelt CE, Mol JNM (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol 12:213–225

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Intergrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lang D, Eisinger J, Reski R, Rensing S (2005) Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in mosses. Plant Biol 7:238–250

    Article  CAS  PubMed  Google Scholar 

  • Lanz T, Tropf S, Marner F-J, Schröder J, Schröder G (1991) The role of cysteines in polyketide synthases. Site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant-specific pathways. J Biol Chem 266:9971–9976

    CAS  PubMed  Google Scholar 

  • Liu B, Falkenstein-Paul H, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Raeth T, Beuerle T, Beerhues L (2007) Biphenyl synthase, a novel type III polyketide synthase. Planta 225:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Loake GJ, Faktor O, Lamb CJ, Dixon RA (1992) Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci USA 89:9230–9234

    Article  CAS  PubMed  Google Scholar 

  • Long M, Rosenberg C (2000) Testing the “proto-splice sites” model of intron origin: evidence from analysis of intron phase correlations. Mol Biol Evol 17:1789–1796

    CAS  PubMed  Google Scholar 

  • Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG codons differs in plants and animals. EMBO J 6:43–48

    PubMed  Google Scholar 

  • Ma L-Q, Pang X-B, Shen H-Y, Pu GB, Wang HH, Lei CY, Wang H, Li GF, Liu BY, Ye HC (2009) A novel type III polyketide synthase encoded by a three-intron gene from Polygonum cuspidatum. Planta 229:457–469

    Article  CAS  PubMed  Google Scholar 

  • Markham KR (1988) Distribution of flavonoids in the lower plants and its evolutionary significance. In: Harborne JB (ed) The flavonoids. Chapman and Hall, London, pp 427–468

    Google Scholar 

  • Mizuuchi Y, Shimokawa Y, Wanibuchi K, Noguchi H, Abe I (2008) Structure function analysis of novel type III polyketide synthases from Arabidopsis thaliana. Biol Pharm Bull 31:2205–2210

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Kondo S, Oguro S, Noguchi H, Sugio S, Abe I, Kohno T (2007) Structural insight into chain-length control and product specificity of pentaketide chromone synthase from Aloe arborescens. Chem Biol 14:359–369

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci USA 100:8007–8012

    Article  CAS  PubMed  Google Scholar 

  • Ober D (2005) Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449

    Article  CAS  PubMed  Google Scholar 

  • Paniego NB, Zuurbier KW, Fung SY, van der Heijden R, Scheffer JJ, Verpoorte R (1999) Phlorisovalerophenone synthase, a novel polyketide synthase from hop (Humulus lupulus L.) cones. Eur J Biochem 262:612–616

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Tan G, Liu H, He S, Gao Y, An C (2007) Identification of a bHLH-type G-box binding factor and its regulation activity with G-box and Box I elements of the PsCHS1 promoter. Plant Cell Rep 26:85–93

    Article  CAS  PubMed  Google Scholar 

  • Quatrano RS, McDaniel SF, Khandelwal A, Perroud PF, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10:182–189

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Fritzowsky D, Lang D, Reski R (2005) Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. BMC Genomics 6:43

    Article  PubMed  Google Scholar 

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:130–139

    Article  PubMed  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sawyer SA (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    CAS  PubMed  Google Scholar 

  • Schröder J (1997) A family of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci 2:373–378

    Article  Google Scholar 

  • Seshime Y, Juvvadi PR, Fujii I, Kitamoto K (2005) Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae. Biochem Biophys Res Commun 331:253–260

    Article  CAS  PubMed  Google Scholar 

  • Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 202:429–434

    Article  CAS  Google Scholar 

  • Spalding JB, Lammers PJ (2004) BLAST Filter and GraphAlign: rule-based formation and analysis of sets of related DNA and protein sequences. Nucleic Acids Res 32:W26–W32

    Article  CAS  PubMed  Google Scholar 

  • Stafford HA (1991) Flavonoid evolution: an enzymic approach. Plant Physiol 96:680–685

    Article  CAS  PubMed  Google Scholar 

  • Staiger D, Kaulen H, Schell J (1989) A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc Natl Acad Sci USA 86:6930–6934

    Article  CAS  PubMed  Google Scholar 

  • Suh D-Y, Fukuma K, Kagami J, Yamazaki Y, Shibuya M, Ebizuka Y, Sankawa U (2000a) Identification of amino acid residues important in the cyclization reactions of chalcone and stilbene synthases. Biochem J 350:229–235

    Article  CAS  PubMed  Google Scholar 

  • Suh D-Y, Kagami J, Fukuma K, Sankawa U (2000b) Evidence for catalytic cysteine-histidine dyad in chalcone synthase. Biochem Biophys Res Commun 275:725–730

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    CAS  PubMed  Google Scholar 

  • Trognitz F, Manosalva P, Gysin R, Niñio-Liu D, Simon R, del Herrera MR, Trognitz B, Ghislain M, Nelson R (2002) Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja × dihaploid S. tuberosum hybrids. Mol Plant Microbe Interact 15:587–597

    Article  CAS  PubMed  Google Scholar 

  • Wingender R, Röhrig H, Höricke C, Wing D, Schell J (1989) Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol Gen Genet 218:315–322

    Article  CAS  PubMed  Google Scholar 

  • Wu S, O’Leary SJ, Gleddie S, Eudes F, Laroche A, Robert LS (2008) A chalcone synthase-like gene is highly expressed in the tapetum of both wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittmack). Plant Cell Rep 27:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Suh D-Y, Sitthithaworn W, Ishiguro K, Kobayashi Y, Shibuya M, Ebizuka Y, Sankawa U (2001) Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum. Planta 214:75–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Regina. E. I. B. and C. C. C. are recipients of NSERC postgraduate scholarships (PGS-D and CGS-M, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Yeon Suh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koduri, P.K.H., Gordon, G.S., Barker, E.I. et al. Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens . Plant Mol Biol 72, 247–263 (2010). https://doi.org/10.1007/s11103-009-9565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9565-z

Keywords

Navigation