Skip to main content
Log in

Genome-wide dissection of the chalcone synthase gene family in Oryza sativa

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Enzymes of the chalcone synthase (CHS) family catalyze the generation of multiple secondary metabolites in fungi, plants, and bacteria. These metabolites have played key roles in antimicrobial activity, UV protection, flower pigmentation, and pollen fertility during the evolutionary process of land plants. We performed a genome-wide investigation about CHS genes in rice (Oryza sativa). The phylogenetic relationships, gene structures, chromosomal locations, and functional predictions of the family members were examined. Twenty-seven CHS family genes (OsCHS0127) were identified in the rice genome and were found to cluster into six classes according to their phylogenetic relationships. The 27 OsCHS genes were unevenly distributed on six chromosomes, and 17 genes were found in the genome duplication zones with two segmental duplication and five tandem duplication events that may have played key roles in the expansion of the rice CHS gene family. In addition, the OsCHS genes exhibited diverse expression patterns under salicylic acid treatment. Our results revealed that the OsCHS genes exhibit both diversity and conservation in many aspects, which will contribute to further studies of the function of the rice CHS gene family and provide a reference for investigating this family in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe I, Morita H (2010) Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 27(6):809–838

    Article  CAS  PubMed  Google Scholar 

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu Ü, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36(4):457–470

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Noel JP (2003a) The chalcone synthase superfamily of type III polyketide synthases. ChemInform 20(1):79–110

    CAS  Google Scholar 

  • Austin MB, Noel JP (2003b) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20(1):79–110

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

  • Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165(1):309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtney-Gutterson N, Al E (1994) Modification of flower color in florist's chrysanthemum: production of a white-flowering variety through molecular genetics. Bio/technology 12(3):268

  • Dao T, Linthorst H, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10(3):397–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deleu W, González V, Monfort A, Bendahmane A, Puigdomènech P, Arús P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 278(6):611–622

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durbin ML, McCaig B, Clegg MT (2000) Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol Biol 42(1):79–92

  • Ferrer J-L, Jez JM, Bowman ME, Dixon RA, Noel JP (1999a) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Mol Biol 6(8):775–784

    Article  CAS  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999b) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6(8):775

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106(8):3468–3496

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183(3):557–564

    Article  PubMed  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2009) Plant polyketide synthases: a fascinating group of enzymes. Plant Physiol Biochem 47(3):167–174

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  CAS  PubMed  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo A, Zhu Q, Chen X, Luo J (2007) GSDS: a gene structure display server. Yi chuan= Hereditas/Zhongguo yi chuan xue hui bian ji 29(8):1023–1026

    Article  CAS  Google Scholar 

  • Han Y-Y, Ming F, Wang W, Wang J-W, Ye M-M, Shen D-L (2006) Molecular evolution and functional specialization of chalcone synthase superfamily from Phalaenopsis orchid. Genetica 128(1–3):429–438

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Ding T, Su B, Jiang H (2016) Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize. Int J Mol Sci 17(2):161

  • Helfrich EJ, Reiter S, Piel J (2014) Recent advances in genome-based polyketide discovery. Curr Opin Biotechnol 29:107–115

    Article  CAS  PubMed  Google Scholar 

  • Holding DR, Meeley RB, Hazebroek J, Selinger D, Gruis F, Jung R, Larkins BA (2010) Identification and characterization of the maize arogenate dehydrogenase gene family. J Exp Bot 61(13):3663–3673

  • Hu H-b, Zhang X-w, Wu Y (2014) Antitumor activity of stilbenoids and flavonoids isolated from Acanthopanax brachypus. Russ J Gen Chem 84(7):1434–1441

    Article  CAS  Google Scholar 

  • Jez JM, Austin MB, Ferrer J-L, Bowman ME, Schröder J, Noel JP (2000a) Structural control of polyketide formation in plant-specific polyketide synthases. Chem Biol 7(12):919–930

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Ferrer J-L, Bowman ME, Dixon RA, Noel JP (2000b) Dissection of malonyl-coenzyme a decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39(5):890–902

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Gu X, Peterson T (2004) Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica. Genome Biology 5(7):R46

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16(2):123–132

    Article  CAS  Google Scholar 

  • Kreuzaler F, Hahlbrock K (1975) Enzymic synthesis of an aromatic ring from acetate units. Eur J Biochem 56(1):205–213

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013(11–12):162750

  • León IPD, Oliver JP, Castro A, Gaggero C, Bentancor M, Vidal S (2007) Erwinia carotovoraelicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biol 7(1):52

    Article  Google Scholar 

  • Martin CR (1993) Structure, function, and regulation of the chalcone synthase. Int Rev Cytol 147:233–284

    Article  CAS  PubMed  Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci 100(26):15682–15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Shen G, Wu W, Liu X, Lin J, Tan F, Sun X, Tang K (2005) Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Sci 168(6):1525–1531

    Article  CAS  Google Scholar 

  • Parage C, Tavares R, Réty S, Baltenweck-Guyot R, Poutaraud A, Renault L, Heintz D, Lugan R, Marais GA, Aubourg S (2012) Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol 160(3):1407–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preisigmuller R, Gnau P, Kindl H (1995) The inducible 9, 10-dihydrophenanthrene pathway: characterization and expression of bibenzyl synthase and S-adenosylhomocysteine hydrolase. Arch Biochem Biophys 317(1):201–207

    Article  CAS  Google Scholar 

  • Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3(1–4):117–129

  • Reddy AR, Scheffler B, Madhuri G, Srivastava MN, Kumar A, Sathyanarayanan PV, Nair S, Mohan M (1996) Chalcone synthase in rice (Oryza sativa L.): detection of the CHS protein in seedlings and molecular mapping of the chs locus. Plant Mol Biol 32(4):735–743

    Article  CAS  PubMed  Google Scholar 

  • Ryder TB, Hedrick SA, Bell JN, Liang X, Clouse SD, Lamb CJ (1987) Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol Gen Genet MGG 210(2):219–233

    Article  CAS  PubMed  Google Scholar 

  • Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129(3):758S–767S

    CAS  PubMed  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18(4):380–416

    Article  CAS  PubMed  Google Scholar 

  • Swigoňová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14(10a):1916–1923

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320(5875):486–488

    Article  CAS  PubMed  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L (2010a) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 10(1):282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng D, Bian Y, Lv Y, Xie Q (2010b) Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.) Mol Biol Rep 37(8):3991–4001

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3(7):e123

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Huang J, Gu H, Zhong Y, Yang Z (2002) Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Mol Biol Evol 19(10):1752–1759

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu H-N, Wang L, Sun B, Gao S, Cheng A-X, Lou H-X (2015) Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum. Plant Cell Rep 34(2):233–245

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Feng Y, Cheng H, Tian D, Yang S, Chen J-Q (2011) Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Gen Genomics 285(1):79–90

    Article  CAS  Google Scholar 

  • Zhang H-X, Lunga P-K, Li Z-J, Dai Q, Du Z-Z (2014) Flavonoids and stilbenoids from Derris eriocarpa. Fitoterapia 95:147–153

    Article  CAS  PubMed  Google Scholar 

  • Zwaagstra ME, Timmerman H, Tamura M, Tohma T, Wada Y, Onogi K, Zhang M-Q (1997) Synthesis and structure-activity relationships of carboxylated chalcones: a novel series of CysLT 1 (LTD4) receptor antagonists. J Med Chem 40(7):1075–1089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Key Laboratory of Crop Biology of Anhui Province for their assistance in this study. This work was supported by the Natural Science Foundation of China (31371980, 31301324). We extend our thanks to the reviewers for their careful reading and helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y. H. conceived of the study and designed the experiments, analyzed the data, and wrote the paper. Y. C. performed the experiments and analyzed the data. H. J. analyzed the data. T. D. conceived of the study and designed the experiments.

Corresponding author

Correspondence to Ting Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Table S1

Primers used in quantitative real-time PCR (qRT-PCR) (DOC 54 kb).

Table S2

Relevant information for the chalcone synthase superfamily genes of Oryza sativa (DOCX 19 kb).

Table S3

Relevant information for the chalcone synthase superfamily genes of maize, sorghum and Arabidopsis (DOC 62 kb).

Table S4

Blast2GO annotation details of 34 OsCHS protein sequences. (DOCX 29 kb).

Table S5

Major MEME motif sequences in OsCHS proteins. (DOCX 17 kb).

Table S6

Ka/Ks analysis of duplicated OsCHS paralogs. (DOCX 16 kb).

Table S7

Ka/Ks analysis of duplicated OsCHS-SbCHS and OsCHS-ZmCHS orthologs. (DOCX 16 kb).

Table S8

Values of CT for the 22 OsCHSs by quantitative real time PCR (qRT-PCR) (DOCX 27 kb).

Fig. S1

Phylogenetic tree and gene structures of the 34 predicted rice CHS proteins. The left side is the NJ tree. The right side shows the exon–intron structures. Exons, introns and untranslated regions (UTRs) are indicated by green rectangles, thin lines and blue rectangles, respectively. (GIF 72 kb)

High resolution image (TIFF 1311 kb).

Fig. S2

Phylogenetic tree of the 27 predicted OsCHS proteins with the CHSs in rice. (GIF 44 kb).

High resolution image (TIFF 247 kb).

Fig. S3

Gene Ontology analysis of the OsCHS proteins. The Blast2GO program was used to define the gene ontology. (A) Biological processes, (B) molecular functions and (C) cellular components. (GIF 95 kb).

High resolution image (TIFF 11675 kb).

Fig. S4

Motif distribution in the OsCHS proteins. The protein names and P values are annotated on the left side. The sizes and orders of motifs do not represent their size or order in the proteins. (GIF 165 kb).

High resolution image (TIFF 2010 kb).

Fig. S5

Location and duplication of CHS genes in the rice genome. The scale along each chromosome is in megabases. Duplicated genes are joined by lines. Some lines may be on top of each other. (GIF 294 kb).

High resolution image (TIFF 3708 kb).

Fig. S6

Extensive microsynteny of CHS genes across O. sativa, S. bicolor and Z. mays. The chromosomes of O. sativa, Z. mays and S. bicolor are indicated in different colors and labeled Os, Zm and Sb respectively. The scale along each chromosome is in megabases (Mb). The syntenic relationships of the CHS regions between O. sativa and Z. mays are represented by red lines, and those between O. sativa and S. bicolor are represented by blue lines. (GIF 200 kb).

High resolution image (TIFF 2095 kb).

Fig. S7

Sliding-window analysis of duplicated OsCHS genes. The gray blocks, from dark to light, represent the Chal_sti_synt_N and Chal_sti_synt_C domains. The window size is 150 bp, and the step size is 9 bp. (GIF 139 kb).

High resolution image (TIFF 2009 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Cao, Y., Jiang, H. et al. Genome-wide dissection of the chalcone synthase gene family in Oryza sativa . Mol Breeding 37, 119 (2017). https://doi.org/10.1007/s11032-017-0721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0721-x

Keywords

Navigation