Skip to main content

Advertisement

Log in

Identification and characterization of a novel Waxy allele from a Yunnan rice landrace

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Low amylose content (AC) is a desirable trait for rice (Oryza sativa L.) cooking quality and is selected in soft rice breeding. To gain a better understanding of the molecular mechanism controlling AC formation, we screened 83 Yunnan rice landraces in China and identified a rice variety, Haopi, with low AC. Genetic analyses and transgenic experiments revealed that low AC in Haopi was controlled by a novel allele of the Wx locus, Wx hp, encoding a granule-bound starch synthase (GBSSI). Sequence comparisons of Wx hp and Wx b alleles (from Nipponbare) showed several nucleotide changes in the upstream regulatory regions (including the promoter, 5′-untranslated region, and first intron 5′ splicing junction site). Interestingly, these changes had no obvious effect on the expression level and splicing efficiency of Wx transcripts. In addition, an examination of the coding region revealed that the Wx hp allele carries an A-to-G change at nucleotide position +497 from the start codon, resulting in an Asp165/Gly165 substitution. The amino acid substitution had no detectable effects on GBSSI activity in vitro; however, it notably reduced the binding of GBSSI to starch granules, resulting in a reduction of AC in rice seeds. Moreover, three other Yunnan landraces with low AC also carry a nucleotide substitution identical to Haopi at the +497 position of the Wx gene, suggesting common ancestry. Based on the single-nucleotide polymorphism, we have developed a new derived cleaved amplified polymorphic sequence marker for use in breeding practice to manipulate AC in rice endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC:

Amylose content

Wx:

Waxy

GBSSI:

Granule-bound starch synthase I

SNP:

Single nucleotide polymorphism

dCAPS:

Derived cleaved amplified polymorphic sequence

3D:

Three dimension

RT-PCR:

Reverse transcriptase polymerase chain reaction

DAF:

Days after flowering

References

  • Ainsworth C, Clark J, Balsdon J (1993) Expression, organization and structure of the genes encoding the waxy protein (granule bond starch synthase) in wheat. Plant Mol Biol 22:67–82

    Article  PubMed  CAS  Google Scholar 

  • Amano E (1981) Genetic and biochemical characterization of waxy mutants in cereals. Environ Health Perspect 37:35–41

    Article  PubMed  CAS  Google Scholar 

  • American Association of Cereal Chemists (AACC) (1995) AACC method 61–02. Determination of the pasting properties of rice with the rapid visco analyzer. Approved methods for the American Association of Cereal Chemists, 9th edn. The Association, St. Paul, MN

    Google Scholar 

  • Asaoka M, Okuno K, Konishi Y, Fuwa H (1987) The effects of endosperm mutations and environmental temperature during development on the distribution of molecular weight of amylose in rice endosperm. Agric Biol Chem 51:3451–3453

    CAS  Google Scholar 

  • Asaoka M, Okuno K, Yano M, Fuwa H (1993) Effects of shrunken and other mutations on the properties of rice endosperm starch. Starch/Stärke 45:383–387

    Article  CAS  Google Scholar 

  • Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet 94:773–781

    Article  CAS  Google Scholar 

  • Baba T, Nishihara M, Mizuno K, Kawasaki T, Shimada H, Kobayashi E, Ohnishi S, Tanaka K, Arai Y (1993) Identification, cDNA cloning and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol 103:565–573

    Article  PubMed  CAS  Google Scholar 

  • Bao JS, Sun M, Corke H (2002) Analysis of genetic behavior of some starch properties in indica rice (Oryza sativa L.): thermal properties, gel texture, swelling volume. Theor Appl Genet 104:408–413

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Blázquez M (2007) Quantitative GUS activity assay of plant extracts. CSH Protoc. doi: 10.1101/pdb.prot4690

  • Bligh HFJ, Till RI, Jones CA (1995) A microsatellite sequence closely linked to the waxy gene of Oryza sativa. Euphytica 86:83–85

    Article  CAS  Google Scholar 

  • Bligh HFJ, Larkin PD, Roach PS, Jones CA, Fu H, Park WD (1998) Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol 38:407–415

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM (2004) Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J 23:3196–3205. doi:10.1038/sj.emboj.7600324

    Article  PubMed  CAS  Google Scholar 

  • Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Bergman C, Pinson S, Fjellstrom R (2008a) Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J Cereal Sci 47:536–545. doi:10.1016/j.jcs.2007.06.013

    Article  CAS  Google Scholar 

  • Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008b) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861. doi:10.1105/tpc.108.058917

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood T, Hicks TB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Denyer K, Johnson P, Zeeman S, Smith AM (2001) The control of amylose synthesis. J Plant Physiol 158:479–487

    Article  CAS  Google Scholar 

  • Dong BZ (2000) The potential commercial value of Yunnan “Zhefang rice”. Yunnan Agric Sci Technol 5:13–15

    Google Scholar 

  • Dung LV, Mikami I, Amano E, Sano Y (2000) Study on the response of dull endosperm 2-2, du2-2, to two Wx alleles in rice. Breed Sci 50:215–219

    CAS  Google Scholar 

  • Echt CG, Schwartz D (1981) Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics 99:275–284

    PubMed  CAS  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171. doi:10.1007/s00122-006-0218-1

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070–1084. doi:10.1104/pp.105.071845

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, Nakamura Y (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023. doi:10.1104/pp.107.102533

    Article  PubMed  CAS  Google Scholar 

  • Fulton DC, Edwards A, Pilling E, Robinson HL, Fahy B, Seale R, Kato L, Donald AM, Geigenberger P, Martin C, Smith AM (2002) Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. J Biol Chem 277:10834–10841. doi:10.1074/jbc.M111579200

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Tagaya M, Inouye M, Preiss J, Fukui T (1990) Identification of lysine 15 at the active site in Escherichia coli glycogen synthase. J Biol Chem 265:2086–2090

    PubMed  CAS  Google Scholar 

  • Gibson TS, Solah VA, McCleary BV (1996) A procedure to measure amylose in cereal starches and flours with concanavalin A. J Cereal Sci 25:111–119

    Article  Google Scholar 

  • Hamilton R, McNally K (2005) Unlocking the genetic vault. Rice Today 4:32–33

    Google Scholar 

  • Hanashiro I, Itoh K, Kuratomi Y, Yamazaki M, Igarashi T, Matsugasako J, Takeda Y (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol 49:925–933. doi:10.1093/pcp/pcn066

    Article  PubMed  CAS  Google Scholar 

  • Harn C, Knight M, Ramakrishnan A, Guan H, Keeling PL, Wasserman BP (1998) Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Mol Biol 37:639–649

    Article  PubMed  CAS  Google Scholar 

  • He FH, Zeng RZ, Xi ZY, Akshay T, Zhang GQ (2003) Genetic diversity of different Waxy genotypes in rice. Mol Plant Breed 1:179–186

    CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9. doi:10.1016/S0168-9525(02)00009-4

    Article  PubMed  CAS  Google Scholar 

  • Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908. doi:10.1104/pp.108.116285

    Article  PubMed  CAS  Google Scholar 

  • Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149:1541–1559. doi:10.1104/pp.109.135293

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hirano HY, Sano Y (1991) Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol 32:989–997

    CAS  Google Scholar 

  • Hirano HY, Eiguchi M, Sano Y (1998) A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol 15:978–987

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (IRGSP) (2005) The map-based sequence of the rice genome. Nature 436:793–800. doi:10.1038/nature03895

    Article  CAS  Google Scholar 

  • Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15:133–138

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Nakajima M, Satoh H, Shimamoto K (2000) dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J 23:451–460. doi:10.1046/j.1365-313x.2000.00803.x

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Nakajima M, Shimamoto K (1997) Silencing of waxy genes in rice containing Wx transgenes. Mol Gen Genet 255:351–358

    Article  PubMed  CAS  Google Scholar 

  • Jayamani P, Negrao S, Brites C, Oliveira M (2007) Potential of Waxy gene microsatellite and single-nucleotide polymorphisms to develop Japonica varieties with desired amylose levels in rice (Oryza sativa L.). J Cereal Sci 46:178–186. doi:10.1016/j.jcs.2007.03.003

    Article  CAS  Google Scholar 

  • Jefferson RD, Kavanagh TA, Bevan MW (1987) GUS fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jiang HW, Dian WM, Wu P (2003) Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry 63:53–59. doi:10.1016/S0031-9422(03)00005-0

    Article  PubMed  CAS  Google Scholar 

  • Jiang D, Cao WX, Dai TB, Jing Q (2004) Diurnal changes in activities of related enzymes to starch synthesis in grains of winter wheat. Acta Botanica Sinica 46:51–57

    CAS  Google Scholar 

  • Juliano BO (1992) Structure, chemistry and function of the rice grain and its fractions. Cereal Foods World 37:772–779

    CAS  Google Scholar 

  • Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y (2005) Roles of isoamylase and ADP-glucose pyophosphorylase in starch granule synthesis in rice endosperm. Plant J 42:164–174. doi:10.1111/j.1365-313X.2005.02367.x

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T (1987) Report of the committee on gene symbolization, nomenclature and linkage groups. II. Registration of new gene symbols. Rice Genet Newslett 4:3–7

    Google Scholar 

  • Koh HJ, Cha KW, Heu MH (1997) Inheritance and some physicochemical properties of newly induced “low-amylose endosperm” mutants in rice. Korean J Breed 29:368–375

    Google Scholar 

  • Konishi S, Izawa T, Lin S, Ebana YK, Fukuta Y, Sasaki T, Yano M (2006) A SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396. doi:10.1126/science.1126410

    Article  PubMed  CAS  Google Scholar 

  • Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587. doi:10.1016/j.tig.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  • Kumar I, Khush GS (1986) Gene dosage effects of amylose content in rice endosperm. Jpn J Genet 61:559–568

    Article  Google Scholar 

  • Larkin PD, Park WD (1999) Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol 40:719–727

    Article  PubMed  CAS  Google Scholar 

  • Larkin PD, Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breeding 12:335–339

    Article  CAS  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939. doi:10.1126/science.1123604

    Article  PubMed  CAS  Google Scholar 

  • Little RR, Hilder GB, Dawson EH (1958) Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem 35:111–126

    CAS  Google Scholar 

  • Lu Z, Sasaki T, Li Y, Yoshihashi T, Li L, Kohyama K (2009) Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel. Food Hydrocolloid. Accessed online 4 Feb 2009. doi: 10.1016/j.foodhyd.2009.01.009

  • Martin C, Smith AM (1995) Starch biosynthesis. Plant cell 7:971–985

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Yano M, Satoh H, Omura T (1987) Effects of sugary and shrunken mutant genes on carbohydrates in rice endosperm during ripening period. Jpn J Breed 37:17–21

    CAS  Google Scholar 

  • Mikami I, Aikawa M, Hirano HY, Sano Y (1999) Altered tissue-specific expression at the Wx gene of opaque mutants in rice. Euphytica 105:91–97

    Article  CAS  Google Scholar 

  • Mikami I, Dung LV, Hirano HY, Sano Y (2000) Effects of the two most common Wx alleles on different genetic backgrounds in rice. Plant Breed 119:505–508

    Article  CAS  Google Scholar 

  • Morell MK, Samuel MS, O’Shea MG (1998) Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 19:2603–2611

    Article  PubMed  CAS  Google Scholar 

  • Mu-Forster C, Huang R, Powers JR, Harriman RW, Knight M, Singletary GW, Keeling PL, Wasserman B (1996) Physical association of starch biosyntheitic enzymes with starch granules of maize endosperm. Plant Physiol 111:821–829

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 43:718–725

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Yuki K, Park SY, Ohya T (1989) Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol 30:833–839

    CAS  Google Scholar 

  • Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, Nagamine T (2002) The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch/Stärke 54:117–131

    Article  CAS  Google Scholar 

  • Nakamura Y, Francisco PB Jr, Hosaka Y, Satoh A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58:213–227. doi:10.1007/s11103-005-6507-2

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, A simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615. doi:10.1016/S0168-9525(02)02820-2

    Article  PubMed  CAS  Google Scholar 

  • Nelson OE, Rines WF (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem Biophy Res Comm 9:297–300

    Article  CAS  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472. doi:10.1104/pp.010127

    Article  PubMed  CAS  Google Scholar 

  • O’Shea MG, Morell MK (1996) High resolution slab gel electrophoresis of 8-amino-1, 3, 6-pyrenetrisulfonic acid (APTS) tagged oligosaccharides using a DNA sequencer. Electrophoresis 17:681–688

    Article  PubMed  Google Scholar 

  • Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244. doi:10.1093/jxb/eri292

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    PubMed  CAS  Google Scholar 

  • Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD (2006) Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 173:975–983. doi:10.1534/genetics.106.056473

    Article  PubMed  CAS  Google Scholar 

  • Pooni HS, Kumar I, Khush GS (1993) Genetical control of amylose content in a diallel set of rice crosses. Heredity 71:603–613

    Article  CAS  Google Scholar 

  • Preiss J (1991) Biology and molecular biology of starch synthesis and its regulation. In: Miflin BJ (ed) Surveys of plant molecular and cell biology, vol 7. Oxford University Press, Oxford, UK, pp 59–114

  • Sano Y (1984) Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet 68:467–473

    Article  CAS  Google Scholar 

  • Sato H, Suzuki Y, Sakai M, Imbe T (2002) Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breed Sci 52:131–135

    Article  CAS  Google Scholar 

  • Satoh H, Omura T (1981) New endosperm mutations induced by chemical mutagen in rice, Oryza sativa L. Jpn J Breed 31:316–326

    CAS  Google Scholar 

  • Satoh H, Omura T (1986) Mutagenesis in rice by treating fertilized egg cells with nitroso compounds. In: International Rice Research Institute, Rice Genetics. Island Publishing House, Manila, The Philippines, pp 707–717

  • Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133:1111–1121. doi:10.1104/pp.103.021527

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849. doi:10.1105/tpc.107.054007

    Article  PubMed  CAS  Google Scholar 

  • Sehnke PC, Chung HJ, Wu K, Ferl RJ (2001) Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proc Natl Acad Sci USA 98:765–770

    Article  PubMed  CAS  Google Scholar 

  • Shen WB, Wang R, Wang YH, Zheng TQ, Wan JM (2003) A novel method of extracting total RNA from rice embryo samples. Heredity (Beijing) 25:208–210

    CAS  Google Scholar 

  • Shimada H, Tada Y, Kawasaki T (1993) Antisense regulation of the rice waxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content on grain starch. Theor Appl Genet 86:665–672

    Article  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028. doi:10.1038/ng.169

    Article  PubMed  CAS  Google Scholar 

  • Shu QY, Wu DX, Xia YW, Gao MW, Ayres NM, Larkin PD, Park WD (1999) Microsatellite polymorphisms on the Waxy gene locus and their relationship to amylose content in indica and japonica rice. Acta Genetica Sinica 26:350–358

    CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. doi:10.1038/ng2014

    Article  PubMed  CAS  Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294. doi:10.1105/tpc.105.038430

    Article  PubMed  CAS  Google Scholar 

  • Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101:823–829

    Article  CAS  Google Scholar 

  • Terada R, Nakajima M, Isshiki M, Okagaki R, Wessler SR, Shimamoto K (2000) Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice. Plant Cell Physiol 41:881–888

    Article  PubMed  CAS  Google Scholar 

  • Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ (2008) Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol 146:1878–1891. doi:10.1104/pp.108.116244

    Article  PubMed  CAS  Google Scholar 

  • Tonsor SJ, Alonso-Blanco C, Koornneef M (2005) Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant Cell Environ 28:2–20

    Article  CAS  Google Scholar 

  • Umeda M, Ohtsubo H, Ohtsubo E (1991) Diversification of the rice Waxy gene by insertion of mobile DNA elements into introns. Jpn J Genet 66:569–586

    Article  PubMed  CAS  Google Scholar 

  • Vandeputte GE, Delcour JA (2004) From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohyd polymers 58:245–266. doi:10.1016/j.carbpol.2004.06.003

    Article  CAS  Google Scholar 

  • Varavinit S, Shobsngob S, Varanyanond W, Chinachoti P, Naivikul O (2003) Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch/Stärke 55:410–415. doi:10.1002/star.200300185

    Article  CAS  Google Scholar 

  • Villareal CP, Juliano BO (1989) Comparative levels of waxy gene product of endosperm starch granules of different rice ecotypes. Starch/Stärke 41:369–371

    Article  CAS  Google Scholar 

  • Vu NT, Shimada H, Kakuta Y, Nakashima T, Ida H, Omori T, Nishi A, Satoh H, Kimura M (2008) Biochemical and crystallographic characterization of the starch branching enzyme I (BEI) from Oryza sativa L. Biosci Biotechnol Biochem 72:2858–2866. doi:10.1271/bbb.80325

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, Zhang JL, Hong MM (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S, Nakamura I, Watanabe KN, Sato YI (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet 108:1200–1204. doi:10.1007/s00122-003-1564-x

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Isono Y, Satoh H, Omura T (1984) Gene analysis of sugary and shrunken mutants of rice, Oryza sativa L. Jpn J Breed 34:43–49

    Google Scholar 

  • Yano M, Okuno K, Satoh H, Omura T (1988) Chromosomal location of genes conditioning low amylose content of endosperm starches in rice, Oryza sativa L. Theor Appl Genet 76:183–189

    Article  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92. doi:10.1126/science.1068037

    Article  PubMed  CAS  Google Scholar 

  • Yun SH, Matheson NK (1990) Estimation of the amy-lose content of starches after precipitation of amylopectin by concanavalin A. Starch/Stärke 42:302–305

    Article  CAS  Google Scholar 

  • Zeng Y, Li Z, Shen S, Yang Z (2001) Studies of diversity and excellent germplasm of Yunnan landraces. Chin J Rice Sci 15:169–174

    Google Scholar 

  • Zeng D, Yan M, Wang Y, Liu X, Qian Q, Li J (2007) Du1, encoding a novel Prp1 protein regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Mol Biol 65:501–509. doi:10.1007/s11103-007-9186-3

    Article  PubMed  CAS  Google Scholar 

  • Zhang QF, Li JY, Xue YB, Han B, Deng XW (2008) Rice 2020: a call for an international coordinated effort in rice functional genomics. Molecular Plant 1:715–719. doi:10.1093/mp/ssn043

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Cai XL, Wang ZY, Hong MM (2003) An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J Biol Chem 278:47803–47811. doi:10.1074/jbc.M302806200

    Article  PubMed  CAS  Google Scholar 

  • Zuk M, Weber R, Szopa J (2005) 14-3-3 Protein down-regulates key enzyme activities of nitrate and carbohydrate metabolism in potato plants. J Agric Food Chem 53:3454–3460. doi:10.1021/jf0485584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Haiyang Wang (Boyce Thompson Institute for Plant Research, Cornell University) and Dr. Tianbao Yang (Center for Integrated Biotechnology and Department of Horticulture, Washington State University) for proofreading and commenting on the manuscript. We also thank Dr. Mao Long (Institute of Crop Science, Chinese Academy of Agricultural Sciences, China) for his helpful comments on the manuscript and starch synthase enzymatic assays. This work was supported by grants from the National High Technology Research and Development Program of China (No. 2006AA100101, 2006AA10Z1A5, 2007AA10Z116, 2006BAD01A01-5), the National Natural Science Foundation of China (No. 30270811 and 30700497), and the 111 project (B08025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Wan.

Additional information

Linglong Liu and Xiaodong Ma have contributed equally to this work.

Accession Numbers

The GenBank accession number for the full-length Wx hp gene is EU871049.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4096 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Ma, X., Liu, S. et al. Identification and characterization of a novel Waxy allele from a Yunnan rice landrace. Plant Mol Biol 71, 609–626 (2009). https://doi.org/10.1007/s11103-009-9544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9544-4

Keywords

Navigation