Skip to main content
Log in

The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

As precursors of wax compounds, very long chain fatty acids participate in the limitation of non-stomatal water loss and the prevention of pathogen attacks. They also serve as energy storage in seeds and as membrane building blocks. Their biosynthesis is catalyzed by the acyl-CoA elongase, a membrane-bound enzymatic complex containing four distinct enzymes (KCS, KCR, HCD and ECR). Twenty-one 3-ketoacyl-CoA synthase (KCS) genes have been identified in Arabidopsis thaliana genome. In this paper we present an overview of the acyl-CoA elongase genes in Arabidopsis focusing on the entire KCS family. We show that the KCS family is made up of 8 distinct subclasses, according to their phylogeny, duplication history, genomic organization, protein topology and 3D modelling. The analysis of the subcellular localization in tobacco cells of the different subunits of the acyl-CoA elongase shows that all these proteins are localized in the endoplasmic reticulum demonstrating that VLCFA production occurs in this compartment. The expression patterns in Arabidopsis of the acyl-CoA elongase genes suggest several levels of regulations at the tissular or organ level but also under stress conditions suggesting a complex organization of this multigenic family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ECR:

Trans-2,3-enoyl-CoA reductase

ER:

Endoplasmic reticulum

EST:

Expressed sequence tag

GUS:

β-Glucuronidase

HCD:

3-Hydroxacyl-CoA dehydratase

KCR:

3-Ketoacyl-CoA reductase

KCS:

3-Ketoacyl-CoA synthase

TAG:

Triacylglycerols

VLCFA:

Long chain fatty acid

References

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA (2002) A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem 277:11481–11488

    Article  PubMed  CAS  Google Scholar 

  • Beeckman T, Engler G (1994) An easy technique for the clearing of histochemically stained plant tissue. Plant Mol Biol Rep 12:37–42

    Article  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed  CAS  Google Scholar 

  • Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19:351–368

    Article  PubMed  CAS  Google Scholar 

  • Bellec Y, Harrar Y, Butaeye C, Darnet S, Bellini C, Faure JD (2002) Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis. Plant J 32:713–722

    Article  PubMed  CAS  Google Scholar 

  • Bereterbide A, Hernould M, Farbos I, Glimelius K, Mouras A (2002) Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene. Plant J 29:607–615

    Article  PubMed  CAS  Google Scholar 

  • Bernert JT Jr, Sprecher H (1977) An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids by rat liver microsomes. J Biol Chem 252:6736–6744

    PubMed  CAS  Google Scholar 

  • Bernert JT Jr, Sprecher H (1979) The isolation of acyl-CoA derivatives as products of partial reactions in the microsomal chain elongation of fatty acids. Biochim Biophys Acta 573:436–442

    PubMed  CAS  Google Scholar 

  • Bessoule JJ, Lessire R, Cassagne C (1989) Partial purification of the acyl-CoA elongase of Allium porrum leaves. Arch Biochem Biophys 268:475–484

    Article  PubMed  CAS  Google Scholar 

  • Blacklock BJ, Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Biophys Res Commun 346:583–590

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Chatre L, Brandizzi F, Hocquellet A, Hawes C, Moreau P (2005) Sec22 and Memb11 are v-SNAREs of the anterograde endoplasmic reticulum-Golgi pathway in tobacco leaf epidermal cells. Plant Physiol 139:1244–1254

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Costaglioli P, Joubes J, Garcia C, Stef M, Arveiler B, Lessire R, Garbay B (2005) Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim Biophys Acta 1734:247–258

    PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Denic V, Weissman JS (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130:663–677

    Article  PubMed  CAS  Google Scholar 

  • Dietrich CR, Perera MA, Yandeau-Nelson D, Meeley RB, Nikolau BJ, Schnable PS (2005) Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J 42:844–861

    Article  PubMed  CAS  Google Scholar 

  • Domergue F, Chevalier S, Santarelli X, Cassagne C, Lessire R (1999) Evidence that oleoyl-CoA and ATP-dependent elongations coexist in rapeseed (Brassica napus L.). Eur J Biochem 263:464–470

    Article  PubMed  CAS  Google Scholar 

  • Domergue F, Chevalier S, Creach A, Cassagne C, Lessire R (2000) Purification of the acyl-CoA elongase complex from developing rapeseed and characterization of the 3-ketoacyl-CoA synthase and the 3-hydroxyacyl-CoA dehydratase. Lipids 35:487–494

    Article  PubMed  CAS  Google Scholar 

  • Efremova N, Schreiber L, Bär S, Heidmann I, Huijser P, Wellesen K, Schwarz-Sommer Z, Saedler H, Yephremov A (2004) Functional conservation and maintenance of expression pattern of FIDDLEHEAD-like genes in Arabidopsis and Antirrhinum. Plant Mol Biol 56:821–837

    Article  PubMed  CAS  Google Scholar 

  • Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling with MODELLER. Current protocols in bioinformatics. Wiley, Supplement 15, 5.61–5630

  • Fehling E, Mukherjee KD (1991) Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochim Biophys Acta 1082:239–246

    PubMed  CAS  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Nakayama M, Kikuchi S, Yoshioka H, Sato F (2002) Applying NaCl to suppress succulent growth and acclimatize cabbage plug seedlings. J Jpn Soc Hortic Sci 71:796–804

    Article  CAS  Google Scholar 

  • Gable K, Garton S, Napier JA, Dunn TM (2004) Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J Exp Bot 55:543–545

    Article  PubMed  CAS  Google Scholar 

  • Gauvrit C, Gaillardon P (1991) Effect of low-temperatures on 2,4-D behaviour in maize plants. Weed Res 31:135–142

    Article  CAS  Google Scholar 

  • Giese BN (1975) Effects of light and temperature on the composition of epicuticular wax of barley leaves. Phytochemistry 14:921–929

    Article  CAS  Google Scholar 

  • Ghanevati M, Jaworski JG (2001) Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS. Biochim Biophys Acta 1530:77–85

    PubMed  CAS  Google Scholar 

  • Ghanevati M, Jaworski JG (2002) Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS. Eur J Biochem 269:3531–3539

    Article  PubMed  CAS  Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  PubMed  CAS  Google Scholar 

  • Heath RJ, Rock CO (2002) The Claisen condensation in biology. Nat Prod Rep 19(5):581–596

    Article  PubMed  CAS  Google Scholar 

  • Hietala T, Mozes N, Genet MJ, Rosenqvist H, Laakso S (1997) Surface lipids and their distribution on willow (Salix) leaves: a combined chemical, morphological and physiochemical study. Colloids Surf B: Biointerfaces 8:205–215

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  PubMed  CAS  Google Scholar 

  • Hülskamp M, Kopczak SD, Horejsi TF, Kihl BK, Pruitt RE (1995) Identification of genes required for pollen–stigma recognition in Arabidopsis thaliana. Plant J 8:703–714

    Article  PubMed  Google Scholar 

  • James DW Jr, Dooner HK (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245

    Article  CAS  Google Scholar 

  • James DW Jr, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    Article  PubMed  CAS  Google Scholar 

  • Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377

    PubMed  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Katavic V, Mietkiewska E, Barton DL, Giblin EM, Reed DW, Taylor DC (2002) Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem 269:5625–5631

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Park SH, Jenks MA (2007) Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164:1134–1143

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Clemens S (2001) Arabidopsis long chain β-ketoacyl-CoA synthase2 for modification of fatty acid composition. PCT Internat Appl WO 01 07 586, 32 pp

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Clemens S, Hooker T (2000) Expression of the wax-specific condensing enzyme CUT1 in Arabidopsis. Biochem Soc Trans 28:651–654

    Article  PubMed  CAS  Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba beta-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    Article  PubMed  CAS  Google Scholar 

  • Lessire R, Juguelin H, Moreau P, Cassagne C (1985) Elongation of acyl-CoAs by microsomes from etiolated leek seedlings. Phytochemistry 24:1187–1192

    Article  CAS  Google Scholar 

  • Li M, Welti R, Wang X (2006a) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Beisson F, Pollard M, Ohlrogge J (2006b) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67:904–915

    Article  PubMed  CAS  Google Scholar 

  • Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter WD, Pruitt RE (1997) Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Dev Biol 189:311–321

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Peterson CA (2003) Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots. Can J Bot 81:405–421

    Article  CAS  Google Scholar 

  • Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  PubMed  CAS  Google Scholar 

  • Mills D, Zhabg G, Benzioni A (2001). Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. J Plant Physiol 158:1031–1039

    Article  CAS  Google Scholar 

  • Nugteren DH (1965) The enzymic chain elongation of fatty acids by rat-liver microsomes. Biochim Biophys Acta 106:280–290

    PubMed  CAS  Google Scholar 

  • Park JA, Kim TW, Kim SK, Kim WT, Pai HS (2005) Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membrane structures and epidermal cell ablation in Nicotiana benthamiana. FEBS Lett 579:4459–4464

    Article  PubMed  CAS  Google Scholar 

  • Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM (2006) Members of the Arabidopsis FAE1-like 3-ketoacyl-coA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem 281:9018–9029

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U, Lolle SJ (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97:1311–1316

    Article  PubMed  CAS  Google Scholar 

  • Qiu X, Janson CA, Konstantinidis AK, Nwagwu S, Silverman C, Smith WW, Khandekar S, Lonsdale J, Abdel-Meguid SS (1999) Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. J Biol Chem 274:36465–36471

    Article  PubMed  CAS  Google Scholar 

  • Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell. Advance Online Publication, Published on March 7, 2008; 10.1105/tpc107054858

  • Rhee Y, Hlousek-Radojcic A, Ponsamuel J, Liu D, Post-Beittenmiller D (1998) Epicuticular wax accumulation and fatty acid elongation activities are induced during leaf development of leeks. Plant Physiol 116:901–911

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Smith M, Kunst L (2001) Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol 46:717–725

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29:661–678

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L, Franke R, Lessire R (2005) Biochemical characterization of elongase activity in corn (Zea mays L.) roots. Phytochemistry 66:131–138

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  PubMed  CAS  Google Scholar 

  • Shepherd T, Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    PubMed  CAS  Google Scholar 

  • Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60

    Article  PubMed  CAS  Google Scholar 

  • Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649–1665

    Article  PubMed  CAS  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  PubMed  CAS  Google Scholar 

  • Trenkamp S, Martin W, Tietjen K (2004) Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Natl Acad Sci USA 101:11903–11908

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11

    Article  Google Scholar 

  • Venegas-Calerón M, Beaudoin F, Sayanova O, Napier JA (2007) Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. J Biol Chem 282:2996–3003

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein-Knowles PM (1995) Biosynthesis and genetics of waxes. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, UK, pp 91–129

    Google Scholar 

  • Xu X, Dietrich CR, Delledonne M, Xia Y, Wen TJ, Robertson DS, Nikolau BJ, Schnable PS (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Dietrich CR, Lessire R, Nikolau BJ, Schnable PS (2002) The endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme A elongase ivolved in the production of cuticular waxes. Plant Physiol 128:924–934

    Article  PubMed  CAS  Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ljerka Kunst (Department of Botany; University of British Columbia; Canada) and Dr. Donghui Li (TAIR curator; Carnegie Institution; Stanford; USA) for help in preparing the KCS nomenclature. We thank the confocal microscope facilities of the IFR 103 (IBVM, Institut National de la Recherche Agronomique-Bordeaux) and Dr. V. Coulon for help in preparing the manuscript. This work was funded by the Ministère de l’Enseignement Supérieur et de la Recherche (France) (doctoral fellowship to B.B.) and the Conseil Régional d’Aquitaine (France) (doctoral fellowship to C.G.). This work was supported by the French Agence Nationale de la Recherche (contract ANR-JC05-45555; S.R.). This work received support from the Centre National de la Recherche Scientifique and the University Victor Segalen Bordeaux 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Joubès.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

Details on homology modeling used to build KCS1 3D model (PPT 62 kb)

Supplemental Table S1

Identity percentages between the different KCS proteins (XLS 21 kb)

Supplemental Table S2

Promoter motifs in ELONGASE genes (XLS 51 kb)

Supplemental Table S3

A subset of expression data of Arabidopsis KCS genes (XLS 359 kb)

Supplemental Table S4

Primers used for PCR cloning and QPCR analysis (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joubès, J., Raffaele, S., Bourdenx, B. et al. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67, 547–566 (2008). https://doi.org/10.1007/s11103-008-9339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9339-z

Keywords

Navigation