Skip to main content

Protein Targeting to the Plastid of Euglena

  • Chapter
  • First Online:
Euglena: Biochemistry, Cell and Molecular Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 979))

Abstract

The lateral transfer of photosynthesis between kingdoms through endosymbiosis is among the most spectacular examples of evolutionary innovation. Euglena, which acquired a chloroplast indirectly through an endosymbiosis with a green alga, represents such an example. As with other endosymbiont-derived plastids from eukaryotes, there are additional membranes that surround the organelle, of which Euglena has three. Thus, photosynthetic genes that were transferred from the endosymbiont to the host nucleus and whose proteins are required in the new plastid, are now faced with targeting and plastid import challenges. Early immunoelectron microscopy data suggested that the light-harvesting complexes, photosynthetic proteins in the thylakoid membrane, are post-translationally targeted to the plastid via the Golgi apparatus, an unexpected discovery at the time. Proteins targeted to the Euglena plastid have complex, bipartite presequences that direct them into the endomembrane system, through the Golgi apparatus and ultimately on to the plastid, presumably via transport vesicles. From transcriptome sequencing, dozens of plastid-targeted proteins were identified, leading to the identification of two different presequence structures. Both have an amino terminal signal peptide followed by a transit peptide for plastid import, but only one of the two classes of presequences has a third domain—the stop transfer sequence. This discovery implied two different transport mechanisms; one where the protein was fully inserted into the lumen of the ER and another where the protein remains attached to, but effectively outside, the endomembrane system. In this review, we will discuss the biochemical and bioinformatic evidence for plastid targeting, discuss the evolution of the targeting system, and ultimately provide a working model for the targeting and import of proteins into the plastid of Euglena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CER:

Chloroplast endoplasmic reticulum

C-terminal:

Carboxy terminal

EndoH:

Endoglycosidase H

ER:

Endoplasmic reticulum

ERAD:

ER associated degradation

EST:

Expressed sequence tag

LHC:

Light-harvesting complex

LHCPII:

Light harvesting chlorophyll a/b binding protein of photosystem II

N-linked:

Asparagine linked

NSF:

N-ethylmaleimide-Sensitive factor

N-terminal:

Amino terminal

PCP:

Soluble peridinin-chlorophyll a-protein

pLHCPII:

Precursor to the light harvesting chlorophyll a/b binding protein of photosystem II

pOEC30:

Precursor to the 30-kDa subunit of the oxygen-evolving complex

pRbcS:

Precursor to the small subunit of ribulose bisphosphate carboxylase-oxygenase

Rbc:

Ribulose bisphosphate carboxylase-oxygenase

RbcS:

Small subunit of ribulose bisphosphate carboxylase-oxygenase

SELMA:

Symbiont-derived ERAD-like machinery

SNARE:

Soluble NSF attachment protein receptor

TIC:

Translocon at the inner chloroplast envelope

TOC:

Translocon at the outer chloroplast envelope

References

  • Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 284(48):33683–33691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A 112(33):10147–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassham DC, Bartling D, Mould RM, Dunbar B, Weisbeek P, Herrmann RG, Robinson C (1991) Transport of proteins into chloroplasts. Delineation of envelope “transit” and thylakoid “transfer” signals within the pre-sequences of three imported thylakoid lumen proteins. J Biol Chem 266(35):23606–23610

    CAS  PubMed  Google Scholar 

  • Bhaya D, Grossman AR (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166

    Article  CAS  PubMed  Google Scholar 

  • Brandt P, von Kessel B (1983) Cooperation of cytoplasmic and plastidial translation in formation of the photosynthetic apparatus and its stage-specific efficiency. Plant Physiol 72(3):616–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793(4):605–614

    Article  CAS  PubMed  Google Scholar 

  • Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10(10):440–447

    Article  CAS  PubMed  Google Scholar 

  • Buren S, Ortega-Villasante C, Blanco-Rivero A, Martinez-Bernardini A, Shutova T, Shevela D, Messinger J, Bako L, Villarejo A, Samuelsson G (2011) Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. PLoS One 6(6)

    Google Scholar 

  • Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6(5):a016147

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond Ser B Biol Sci 358(1429):109–133

    Article  CAS  Google Scholar 

  • Chan RL, Keller M, Canaday J, Weil JH, Imbault P (1990) Eight small subunits of Euglena ribulose 1-5 bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J 9(2):333–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan JS, Rao A, Raghava GP (2013) In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 8(6):e67008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5(12):2079–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enomoto T, Sulli C, Schwartzbach SD (1997) A soluble chloroplast protease processes the Euglena polyprotein precursor to the light harvesting chlorophyll a/b binding protein of photosystem II. Plant Cell Physiol 38:743–746

    Article  CAS  Google Scholar 

  • Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 3:140–150

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SP (1970) Comparative ultrastructure of algal chloroplast. Ann N Y Acad Sci 175(2):454–473

    Article  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gibbs SP (1981a) The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72:49–99

    Article  Google Scholar 

  • Gibbs SP (1981b) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193–207

    Article  CAS  PubMed  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46(1):1–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman A, Manodori A, Snyder D (1990) Light-harvesting proteins of diatoms: their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Mol Gen Genet 224(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (1988) Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947:307–333

    Article  Google Scholar 

  • Henze K, Badr A, Wettern M, Cerff R, Martin W (1995) A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc Natl Acad Sci U S A 92(20):9122–9126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlne G, Schantz R (1987) Molecular analysis of the transcripts encoding the light-harvesting chlorophyll a/b protein in Euglena gracilis: unusual size of the mRNA. Curr Genet 12(8):611–616

    Article  CAS  PubMed  Google Scholar 

  • Houlne G, Schantz R (1988) Characterization of cDNA sequences for LHCI apoproteins in Euglena gracilis: the mRNA encodes a large precursor containing several consecutive divergent polypeptides. Mol Gen Genet 213(2–3):479–486

    Article  CAS  PubMed  Google Scholar 

  • Inagaki J, Fujita Y, Hase T, Yamamoto Y (2000) Protein translocation within chloroplast is similar in Euglena and higher plants. Biochem Biophys Res Commun 277(2):436–442

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Chan RL, Tessier LH, Weil JH, Imbault P (1991) Post-transcriptional regulation by light of the biosynthesis of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit. Plant Mol Biol 17(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Kishore R, Schwartzbach SD (1992) Translational control of the synthesis of the Euglena light harvesting chlorophyll a/b binding protein of photosystem II. Plant Sci 85:79–89

    Article  CAS  Google Scholar 

  • Kishore R, Muchhal U, Schwartzbach SD (1993) The presequence of Euglena LHCPII, a cytoplasmically synthesized chloroplast protein, contains a functional endoplasmic reticulum targeting domain. Proc Natl Acad Sci U S A 90:11845–11849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko K, Cashmore AR (1989) Targeting of proteins to the thylakoid lumen by the bipartite transit peptide of the 33 kd oxygen-evolving protein. EMBO J 8(11):3187–3194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koziol AG, Durnford DG (2008) Euglena light-harvesting complexes are encoded by multifarious polyprotein mRNAs that evolve in concert. Mol Biol Evol 25(1):92–100

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa T, Sakaguchi M, Mihara K, Omura T (1991) Systematic analysis of stop-transfer sequence for microsomal membrane. J Biol Chem 266(14):9251–9255

    CAS  PubMed  Google Scholar 

  • Lee J, Kim DH, Hwang I (2014) Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front Plant Sci 5:173

    PubMed  PubMed Central  Google Scholar 

  • Lefortran M, Pineau B (1980) Structure and functional-organization of chloroplastic membranes envelope in Euglena-gracilis. Eur J Cell Biol 22(1):279–279

    Google Scholar 

  • Lefort-Tran M, Pouphile M, Freyssinet G, Pineau B (1980) Structural and functional significance of the chloroplast envelope of Euglena: immunocytological and freeze fracture study. J Ultrastruct Res 73(1):44–63

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Ma L, Burkhart W, Spremulli LL (1994) Isolation and characterization of cDNA clones for chloroplast translational initiation factor-3 from Euglena gracilis. J Biol Chem 269(13):9436–9444

    CAS  PubMed  Google Scholar 

  • Lousa CD, Denecke J (2016) Lysosomal and vacuolar sorting: not so different after all! Biochem Soc Trans 44:891–897

    Article  Google Scholar 

  • Maier UG, Zauner S, Hempel F (2015) Protein import into complex plastids: cellular organization of higher complexity. Eur J Cell Biol 94(7–9):340–348

    Article  CAS  PubMed  Google Scholar 

  • Muchhal US, Schwartzbach SD (1992) Characterization of a Euglena gene encoding a polyprotein precursor to the light-harvesting chlorophyll a/b-binding protein of photosystem II. Plant Mol Biol 18(2):287–299

    Article  CAS  PubMed  Google Scholar 

  • Muchhal US, Schwartzbach SD (1994) Characterization of the unique intron-exon junctions of Euglena gene(s) encoding the polyprotein precursor to the light-harvesting chlorophyll a/b binding protein of photosystem II. Nucl Acid Res 22:5737–5744

    Article  CAS  Google Scholar 

  • Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116(Pt 14):2867–2874

    Article  CAS  PubMed  Google Scholar 

  • Needham PG, Brodsky JL (2013) How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim Biophys Acta 1833(11):2447–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus JM, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  CAS  PubMed  Google Scholar 

  • Osafune T, Schiff JA, Hase E (1990) Immunogold localization of LHCPII apoprotein in the Golgi of Euglena. Cell Struct Funct 15(2):99–105

    Article  CAS  Google Scholar 

  • Osafune T, Schiff JA, Hase E (1991a) Stage-dependent localization of LHCP II apoprotein in the Golgi of synchronized cells of Euglena gracilis by immunogold electron microscopy. Exp Cell Res 193(2):320–330

    Article  CAS  PubMed  Google Scholar 

  • Osafune T, Sumida S, Schiff JA, Hase E (1991b) Immunolocalization of LHCPII apoprotein in the Golgi during light-induced chloroplast development in non-dividing Euglena cells. J Electron Microsc 40:41–47

    CAS  Google Scholar 

  • Paila YD, Richardson LGL, Schnell DJ (2015) New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 427(5):1038–1060

    Article  CAS  PubMed  Google Scholar 

  • Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays 29(10):1048–1058

    Article  CAS  PubMed  Google Scholar 

  • Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348(4):1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Peschke M, Moog D, Klingl A, Maier UG, Hempel F (2013) Evidence for glycoprotein transport into complex plastids. Proc Natl Acad Sci U S A 110(26):10860–10865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaumann M, Pelzer-Reith B, Martin WF, Schnarrenberger C (1997) Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis. Curr Genet 31(5):430–438

    Article  CAS  PubMed  Google Scholar 

  • Rikin A, Schwartzbach SD (1988) Extremely large and slowly processed precursors to the Euglena light harvesting chlorophyll a/b binding proteins of photosystem II. Proc Natl Acad Sci U S A 85:5117–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikin A, Schwartzbach SD (1989) Regulation by light and ethanol of the synthesis of the light harvesting chlorophyll a/b binding protein of photosystem II in Euglena. Planta 178:76–83

    Article  CAS  PubMed  Google Scholar 

  • Santillan Torres JL, Atteia A, Claros MG, Gonzalez-Halphen D (2003) Cytochrome f and subunit IV, two essential components of the photosynthetic bf complex typically encoded in the chloroplast genome, are nucleus-encoded in Euglena gracilis. Biochim Biophys Acta 1604(3):180–189

    Article  CAS  PubMed  Google Scholar 

  • Schiff JA, Schwartzbach SD, Osafune T, Hase E (1991) Photocontrol and processing of LHCPII apoprotein in Euglena - possible role of Golgi and other cytoplasmic sites. J Photochem Photobiol B Biol 11(2):219–236

    Article  CAS  Google Scholar 

  • Schwartzbach SD, Osafune T, Löffelhardt W (1998) Protein import into Cyanelles and complex chloroplasts. Plant Mol Biol 38:247–263

    Article  CAS  PubMed  Google Scholar 

  • Shao S, Hegde RS (2011) Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol 27:25–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif AL, Smith AG, Abell C (1989) Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur J Biochem 184(2):353–359

    Article  CAS  PubMed  Google Scholar 

  • Shigemori Y, Inagaki J, Mori H, Nishimura M, Takahashi S, Yamamoto Y (1994) The presequence of the precursor to the nucleus-encoded 30 kDa protein of photosystem II in Euglena gracilis Z includes two hydrophobic domains. Plant Mol Biol 24(1):209–215

    Article  CAS  PubMed  Google Scholar 

  • Slavikova S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD (2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118(Pt 8):1651–1661

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P (1986) The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46(3):365–375

    Article  CAS  PubMed  Google Scholar 

  • Spano AJ, Ghaus H, Schiff JA (1987) Chlorophyll-protein complexes and other thylakoid components at the low intensity threshold in Euglena chloroplast development. Plant Cell Physiol 28(6):1101–1108

    CAS  Google Scholar 

  • Stork S, Moog D, Przyborski JM, Wilhelmi I, Zauner S, Maier UG (2012) Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. Eukaryot Cell 11(12):1472–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulli C, Schwartzbach SD (1995) The polyprotein precursor to the Euglena light harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J Biol Chem 270:13084–13090

    Article  CAS  PubMed  Google Scholar 

  • Sulli C, Schwartzbach SD (1996) A soluble protein is imported into Euglena chloroplasts as a membrane-bound precursor. Plant Cell 8:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulli C, Fang ZW, Muchhal U, Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 274:457–463

    Article  CAS  PubMed  Google Scholar 

  • Theg SM, Bauerle C, Olsen LJ, Selman BR, Keegstra K (1989) Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. J Biol Chem 264(12):6730–6736

    CAS  PubMed  Google Scholar 

  • Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26(3):631–648

    Article  CAS  PubMed  Google Scholar 

  • Vacula R, Steiner JM, Krajcovic J, Ebringer L, Loffelhardt W (1999) Nucleus-encoded precursors to thylakoid lumen proteins of Euglena gracilis possess tripartite presequences. DNA Res 6(1):45–49

    Article  CAS  PubMed  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7(12):1224–1231

    Article  PubMed  Google Scholar 

  • Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87(2):233–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Schwartzbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Durnford, D.G., Schwartzbach, S.D. (2017). Protein Targeting to the Plastid of Euglena . In: Schwartzbach, S., Shigeoka, S. (eds) Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-319-54910-1_10

Download citation

Publish with us

Policies and ethics