Skip to main content

Advertisement

Log in

Rosemary (Rosmarinus officinalis L.): extraction techniques, analytical methods and health-promoting biological effects

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Rosemary (Rosmarinus officinalis L.) of the Lamiaceae family represents an evergreen medicinal plant with various health-promoting pharmacological effects. This paper provides a complete overview of diverse biological activities of rosemary extracts, essential oils as well as their numerous bioactive compounds, ranging from antioxidative, anti-inflammatory, and antimicrobial over cognitive enhancing to their anticarcinogenic effects. In addition, state of the art extraction, distillation, fractionation, and characterization techniques for obtaining high-quality rosemary extracts and essential oils as well as methods for determining their antioxidative, antimicrobial, anti-inflammatory, and anticarcinogenic potentials are also presented. Finally, new ideas for future computational studies on chemical reactivities and binding affinities of health-promoting rosemary compounds together with suggestions for their improved bioavailability through diverse encapsulation techniques are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ACC:

Acetyl-CoA carboxylase

ACR:

Acrylamide

AD:

Alzheimer’s disease

AIA:

Adjutant-induced arthritis

Akt:

Protein kinase B

ALP:

Alkaline phosphatase

ALT:

Alanine transaminase

AM:

Alveolar macrophage

AMPK:

AMP-activated protein kinase

AAPH:

2,2′- Azo-bis(2-amidinopropane) dihydrochloride

AST:

Aspartate transaminase

Bad:

Bcl-2 associated agonist of cell death

Bax:

Bcl-2 associated x protein

Bcl-2:

B-cell lymphoma 2

Bcl-x:

B-cell lymphoma x

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

BID:

BH3 interacting domain death agonist

BOLD:

The Barcode of Life Data System

CAT:

Catalase

CCl4:

Carbon tetrachloride

CHOP:

C/EBP homologous protein

cIAP-1:

Cellular inhibitor of apoptosis protein 1

CNS:

Central nervous system

COL1A1/2:

Type I collagen alpha 1 and 2

COX-2:

Cyclooxygenase-2

CRP:

C-reactive protein

DAD:

UV-diode array detector

DBMA:

7, 12-Dimethylbenzanthracene

DMH:

1,2-Dimethylhydrazine

DNCB:

2,4-Dinitrochlorobenzene

DPPH:

2,2-Diphenyl-1-picrylhydrazil

DPP-IV:

Dipeptidyl peptidase-IV

DR5:

Death receptor 5

EC50 :

Efficient concentration

EFSA:

European Food Safety Authority

EMA:

European Medicinal Agency

eNOS:

Endothelial nitric oxide synthase

EO:

Essential oils

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

ERK:

Extracellular signal-regulated kinases

ESI:

Electrospray ionization

EU:

European Union

FADD:

Fas-associated via death domain

Fas:

Fas cell surface death receptor

FasL:

Fas ligand

FID:

Flame ionization detector

G6Pase:

Glucose-6-phosphatase

GABAA :

γ-Aminobutyric acid

GC:

Gas chromatography

GIO:

Glucocorticoid-induced osteoporosis

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSK-3β:

Glycogen synthase kinase 3β

GSSG:

Oxidized glutathione

HD:

Hydrodistillation

HIF-α:

Hypoxia-inducible factor 1-alpha

HIV-1:

Human immunodeficiency virus type 1

HO-1:

Heme oxygenase-1

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectroscopy

HSA:

Human serum albumin

HS-SPME:

Headspace solid-phase microextraction

IAP:

Inhibitor of apoptosis

IC50 :

Inhibitory concentration

IEC6:

Small intestine epithelial cells

IFN-γ:

Interferon-gamma

IgE:

Immunoglobulin E

IKK:

IκB kinase

IL-6:

Interleukin 6

iNOS:

Inducible nitric oxide synthase

iPSC:

Induced pluripotent stem cells

JAK:

Janus kinase

JNK:

CJun N-terminal kinase

LC:

Liquid chromatography

LDLR:

Low-density lipoprotein receptor

L-NAME:

Nω-Nitro-L-arginine methyl ester hydrochloride

LP:

Lipid peroxidation

LPS:

Lipopolysaccharide

Lrp-5:

Lipoprotein-receptor-related protein 5

Lrrk2:

Leucine-rich repeat kinase 2

LTQ:

Linear Trap Quadrupole

MAE:

Microwave-assisted extraction

MAHD:

Microwave-assisted hydrodistillation

MAPK:

Mitogen-activated protein kinases

MBC:

Minimum bactericidal concentration

Mcl-1:

Myeloid leukemia cell differentiation protein

MDA:

Malondialdehyde

MD:

Molecular dynamics

MHDG:

Microwave hydro diffusion and gravity

MIC:

Minimum inhibitory concentration

MKP-1:

MAP kinase phosphatase 1

MMP-9:

Matrix metalloproteinase 9

MRSA:

Methicillin-resistant Staphylococcus aureus

MS:

Mass spectrometry

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MW:

Molecular weight

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NDEA:

N-nitrosodiethylamine

NF-κB:

Nuclear factor-kappa B

NLRP3:

Nicotine-induced NLR family pyrin domain containing 3

NMDA:

N-methyl-D-aspartic acid

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid-2 related factor-2

OPCML:

Opioid binding protein/cell adhesion molecule

OVA:

Ovalbumin

PARP:

Poly(ADP-ribose) polymerase

PDA:

Photodiode array detector

PDE4:

CAMP-phosphodiesterase 4

PDIA3:

Protein disulfide-isomerase A3

PD:

Parkinson’s disease

PEGylated:

Polyethylene glycol

PGC-1α:

γ Coactivator 1-α

PHWE:

Pressurized hot water extraction

PI3K:

Phosphatidylinositol 3-kinase

P-IκB:

Phospho-inhibitory subunit of NF-κB

PLE:

Pressurized liquid extraction

PP2A:

Phosphatase 2A

PPAR:

Peroxisome proliferator-activated receptor

Q-TOF:

Quadrupole-time of flight

RORγ:

RAR-related orphan receptor gamma

ROS:

Reactive oxygen species

SAR:

Structure-activity relationship

SD:

Steam distillation

SFE:

Supercritical-fluid extraction

SFME:

Solvent-free microwave distillation extraction

sICAM-1:

Soluble intercellular adhesion molecule 1

SIRT1:

Sirtuin 1

SNpc:

Substantia nigra pars compacta

SOD:

Superoxide dismutase

Sp1:

Specificity protein 1

STAT3:

Signal transducer and activator of transcription 3

STZ:

Streptozotocin

SWE:

Superheated or subcritical water extraction

TCTP:

Translationally controlled tumor protein

Th2:

T helper cell type 2

TNF-α:

Tumor necrosis factor-alpha

TPA:

12-O-tetradecanoyl-phorbol-13-acetate

TRPV1:

Transient receptor potential cation channel subfamily V member 1

UAE:

Ultrasound-assisted extraction

UHPLC:

Ultra-high performance liquid chromatography

VCAM-1:

Vascular cell adhesion molecule

WHO:

World Health Organization

References

  • Abdelhalim A, Karim N, Chebib M, Aburjai T, Khan I, Johnston GA, Hanrahan J (2015) Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus Officinalis. J Pharm Pharm Sci 18(4):448–459. https://doi.org/10.18433/j3pw38

    Article  PubMed  Google Scholar 

  • Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, Engel K-H, Gontard N, Gott D, Grilli S (2008) Use of rosemary extracts as a food additive-Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J 721:1–29

    Google Scholar 

  • Ahmed Z, Abdeslam-Hassan M, Ouassila L, Danielle B (2012) Extraction and modeling of Algerian Rosemary essential oil using supercritical CO2: effect of pressure and temperature. Terragreen 2012 Clean Energy Solutions for Sustainable Environment (Cesse) 18:1038–1046. https://doi.org/10.1016/j.egypro.2012.05.118

    Article  CAS  Google Scholar 

  • Albalawi A, Alhasani RHA, Biswas L, Reilly J, Akhtar S, Shu X (2018) Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos. Exp Eye Res 175:103–114. https://doi.org/10.1016/j.exer.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Chua BL, Chow YH (2019) An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: past, present and future. Trac-Trends Anal Chem 118:338–351. https://doi.org/10.1016/j.trac.2019.05.040

    Article  CAS  Google Scholar 

  • Aliebrahimi S, Kouhsari SM, Arab SS, Shadboorestan A, Ostad SN (2018) Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed Pharmacother 106:1527–1536. https://doi.org/10.1016/j.biopha.2018.07.055

    Article  CAS  PubMed  Google Scholar 

  • al-Sereiti MR, Abu-Amer KM, Sen P (1999) Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 37(2):124–130

    CAS  PubMed  Google Scholar 

  • Amaral GP, de Carvalho NR, Barcelos RP, Dobrachinski F, Portella Rde L, da Silva MH, Lugokenski TH, Dias GR, da Luz SC, Boligon AA, Athayde ML, Villetti MA, Antunes Soares FA, Fachinetto R (2013) Protective action of ethanolic extract of Rosmarinus officinalis L. in gastric ulcer prevention induced by ethanol in rats. Food Chem Toxicol 55:48–55. https://doi.org/10.1016/j.fct.2012.12.038

    Article  CAS  PubMed  Google Scholar 

  • Amaral GP, Mizdal CR, Stefanello ST, Mendez ASL, Puntel RL, de Campos MMA, Soares FAA, Fachinetto R (2019) Antibacterial and antioxidant effects of Rosmarinus officinalis L. extract and its fractions. J Tradit Complement Med 9(4):383–392. https://doi.org/10.1016/j.jtcme.2017.10.006

    Article  PubMed  Google Scholar 

  • Andrade MA, Ribeiro-Santos R, Bonito MCC, Saraiva M, Sanches-Silva A (2018) Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. Lwt-Food Sci Technol 92:497–508. https://doi.org/10.1016/j.lwt.2018.02.041

    Article  CAS  Google Scholar 

  • Anusha C, Sumathi T, Joseph LD (2017) Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 269:67–79. https://doi.org/10.1016/j.cbi.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  • Aqel MB (1991) Relaxant effect of the volatile oil of romarinus-officinalis on tracheal smooth-muscle. J Ethnopharmacol 33(1–2):57–62. https://doi.org/10.1016/0378-8741(91)90161-6

    Article  CAS  PubMed  Google Scholar 

  • Aqel MB (2008) A vascular smooth muscle relaxant effect of Rosmarinus officinalis. Int J Pharmacogn 30(4):281–288. https://doi.org/10.3109/13880209209054014

    Article  Google Scholar 

  • Atucha E, Roozendaal B (2015) The inhibitory avoidance discrimination task to investigate accuracy of memory. Front Behav Neurosci 9:60. https://doi.org/10.3389/fnbeh.2015.00060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azwanida N (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 4(196):2167–2412

    Google Scholar 

  • Bacanli M, Basaran AA, Basaran N (2015) The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem Toxicol 81:160–170. https://doi.org/10.1016/j.fct.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  • Bacanli M, Anlar HG, Aydin S, Cal T, Ari N, Undeger Bucurgat U, Basaran AA, Basaran N (2017) d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem Toxicol 110:434–442. https://doi.org/10.1016/j.fct.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  • Bae G-S, Park K-C, Choi SB, Jo I-J, Choi M-O, Hong S-H, Song K, Song H-J, Park S-J (2012) Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci 91(17–18):866–871

    CAS  PubMed  Google Scholar 

  • Bai N, He K, Roller M, Lai CS, Shao X, Pan MH, Ho CT (2010) Flavonoids and phenolic compounds from Rosmarinus officinalis. J Agric Food Chem 58(9):5363–5367. https://doi.org/10.1021/jf100332w

    Article  CAS  PubMed  Google Scholar 

  • Bai YY, Yan D, Zhou HY, Li WX, Lou YY, Zhou XR, Qian LB, Xiao C (2020) Betulinic acid attenuates lipopolysaccharide-induced vascular hyporeactivity in the rat aorta by modulating Nrf2 antioxidative function. Inflammopharmacology 28(1):165–174. https://doi.org/10.1007/s10787-019-00622-4

    Article  CAS  PubMed  Google Scholar 

  • Bakirel T, Bakirel U, Keles OU, Ulgen SG, Yardibi H (2008) In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol 116(1):64–73. https://doi.org/10.1016/j.jep.2007.10.039

    Article  PubMed  Google Scholar 

  • Balez R, Steiner N, Engel M, Munoz SS, Lum JS, Wu Y, Wang D, Vallotton P, Sachdev P, O’Connor M, Sidhu K, Munch G, Ooi L (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 6:31450. https://doi.org/10.1038/srep31450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y, Sun Y-W, Ji J, Gan L, Zhang C-F, Wang C-Z, Yuan C-S (2019) Genkwanin ameliorates adjuvant-induced arthritis in rats through inhibiting JAK/STAT and NF-κB signaling pathways. Phytomedicine 63:153036

    CAS  PubMed  Google Scholar 

  • Baselt RC (2000) Disposition of toxic drugs and chemicals in man, vol 59. Chemical Toxicology Institute

  • Bassetti M, Vena A, Croxatto A, Righi E, Guery B (2018) How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527. https://doi.org/10.7573/dic.212527

    Google Scholar 

  • Begum A, Sandhya S, Shaffath Ali S, Vinod KR, Reddy S, Banji D (2013) An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci Pol Technol Aliment 12(1):61–73

    CAS  PubMed  Google Scholar 

  • Bellumori M, Michelozzi M, Innocenti M, Congiu F, Cencetti G, Mulinacci N (2015) An innovative approach to the recovery of phenolic compounds and volatile terpenes from the same fresh foliar sample of Rosmarinus officinalis L. Talanta 131:81–87. https://doi.org/10.1016/j.talanta.2014.07.073

    Article  CAS  PubMed  Google Scholar 

  • Bellumori M, Marzia I, Binello A, Boffa L, Mulinacci N, Cravotto G (2016) Selective recovery of rosmarinic and carnosic acids from rosemary leaves under ultrasound- and microwave-assisted extraction procedures. C R Chim 19(6):699–706. https://doi.org/10.1016/j.crci.2015.12.013

    Article  CAS  Google Scholar 

  • Beretta G, Artali R, Facino RM, Gelmini F (2011) An analytical and theoretical approach for the profiling of the antioxidant activity of essential oils: the case of Rosmarinus officinalis L. J Pharm Biomed Anal 55(5):1255–1264. https://doi.org/10.1016/j.jpba.2011.03.026

    Article  CAS  PubMed  Google Scholar 

  • Bernatoniene J, Cizauskaite U, Ivanauskas L, Jakstas V, Kalveniene Z, Kopustinskiene DM (2016) Novel approaches to optimize extraction processes of ursolic, oleanolic and rosmarinic acids from Rosmarinus officinalis leaves. Ind Crops Prod 84:72–79. https://doi.org/10.1016/j.indcrop.2016.01.031

    Article  CAS  Google Scholar 

  • Bhise K, Kashaw SK, Sau S, Iyer AK (2017) Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach. Int J Pharm 526(1–2):506–515. https://doi.org/10.1016/j.ijpharm.2017.04.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohloli Khiavi R (2017) Methods for in vitro evaluating antimicrobial activity: a review. Lab Diagn 9(35):43–53

    Google Scholar 

  • Boll M, Weber LW, Becker E, Stampfl A (2001) Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C J Biosci 56(7–8):649–659. https://doi.org/10.1515/znc-2001-7-826

    Article  CAS  PubMed  Google Scholar 

  • Borges RS, Ortiz BLS, Pereira ACM, Keita H, Carvalho JCT (2019) Rosmarinus officinalis essential oil: a review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol 229:29–45. https://doi.org/10.1016/j.jep.2018.09.038

    Article  CAS  PubMed  Google Scholar 

  • Borrás-Linares I, Stojanović Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gajić J, Fernández-Gutiérrez A, Segura-Carretero A (2014) Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci 15(11):20585–20606

    PubMed  PubMed Central  Google Scholar 

  • Botsoglou N, Taitzoglou I, Zervos I, Botsoglou E, Tsantarliotou M, Chatzopoulou PS (2010) Potential of long-term dietary administration of rosemary in improving the antioxidant status of rat tissues following carbon tetrachloride intoxication. Food Chem Toxicol 48(3):944–950. https://doi.org/10.1016/j.fct.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  • Bousbia N, Vian MA, Ferhat MA, Petitcolas E, Meklati BY, Chemat F (2009) Comparison of two isolation methods for essential oil from rosemary leaves: hydrodistillation and microwave hydrodiffusion and gravity. Food Chem 114(1):355–362. https://doi.org/10.1016/j.foodchem.2008.09.106

    Article  CAS  Google Scholar 

  • Boutekedjiret C, Bentahar F, Belabbes R, Bessiere JM (2003) Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragrance J 18(6):481–484. https://doi.org/10.1002/ffj.1226

    Article  CAS  Google Scholar 

  • Bouzenna H, Hfaiedh N, Giroux-Metges MA, Elfeki A, Talarmin H (2017) Potential protective effects of alpha-pinene against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed Pharmacother 93:961–968. https://doi.org/10.1016/j.biopha.2017.06.031

    Article  CAS  PubMed  Google Scholar 

  • Bozin B, Mimica-Dukic N, Samojlik I, Jovin E (2007) Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem 55(19):7879–7885. https://doi.org/10.1021/jf0715323

    Article  CAS  PubMed  Google Scholar 

  • Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, Hoboken

    Google Scholar 

  • Brglez Mojzer E, Knez Hrncic M, Skerget M, Knez Z, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. https://doi.org/10.3390/molecules21070901

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown S, Garver W, Orlando R (2017) 1, 8-Cineole: an underappreciated anti-inflammatory therapeutic. J Biomol Res Ther 6(1):1000154

    Google Scholar 

  • Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012a) The mouse forced swim test. J Vis Exp 59:e3638. https://doi.org/10.3791/3638

    Article  CAS  Google Scholar 

  • Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD (2012b) The tail suspension test. J Vis Exp 59:e3769. https://doi.org/10.3791/3769

    Article  Google Scholar 

  • Cao H, Cheng W-X, Li C, Pan X-L, Xie X-G, Li T-H (2005) DFT study on the antioxidant activity of rosmarinic acid. J Mol Struct (Thoechem) 719(1–3):177–183

    CAS  Google Scholar 

  • Carvalho RN Jr, Moura LS, Rosa PT, Meireles MAA (2005) Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield, composition, and antioxidant activity. J Supercrit Fluids 35(3):197–204

    CAS  Google Scholar 

  • Carvalho M, Botelho do Rego AM, Galvao AM, Herrmann R, Marques F (2018) Search for cytotoxic compounds against ovarian cancer cells: Synthesis, characterization and assessment of the activity of new camphor carboxylate and camphor carboxamide silver complexes. J Inorg Biochem 188:88–95. https://doi.org/10.1016/j.jinorgbio.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  • Castle L, Crebelli R, Dekant W, Gontard N, Gott D, Grilli S, Gürtler R, Leclercq C, Malcata FX, Mennes WC, Tobback PP, Toldrá F Use of rosemary extracts as a food additive: Scientific Opinion of the Panel on Food Additives , Flavourings , Processing Aids and Materials in Contact with Food. In: EFSA Journal, 2008. vol 6. p 721

  • Celiktas OY, Kocabas EEH, Bedir E, Sukan FV, Ozek T, Baser KHC (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem 100(2):553–559. https://doi.org/10.1016/j.foodchem.2005.10.011

    Article  CAS  Google Scholar 

  • Cemeli E, Baumgartner A, Anderson D (2009) Antioxidants and the comet assay. Mutat Res 681(1):51–67. https://doi.org/10.1016/j.mrrev.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  • Chahboun N, Esmail A, Rhaiem N, Abed H, Amiyare R, Barrahi M, Berrabeh M, Oudda H, Ouhssine M (2014) Extraction and study of the essential oil Rosmarinus officinalis cuellie in the region of Taza, Morocco. Pharma Chemica 6:367–372

    Google Scholar 

  • Chao S, Young G, Oberg C, Nakaoka K (2008) Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour Fragrance J 23(6):444–449. https://doi.org/10.1002/ffj.1904

    Article  CAS  Google Scholar 

  • Chaudhary SC, Siddiqui MS, Athar M, Alam MS (2012) D-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Hum Exp Toxicol 31(8):798–811. https://doi.org/10.1177/0960327111434948

    Article  CAS  PubMed  Google Scholar 

  • Chen YR, Yang KC, Lu DH, Wu WT, Wang CC, Tsai MH (2019) The chondroprotective effect of diosmin on human articular chondrocytes under oxidative stress. Phytother Res 33(9):2378–2386. https://doi.org/10.1002/ptr.6425

    Article  CAS  PubMed  Google Scholar 

  • Cheng A-C, Lee M-F, Tsai M-L, Lai C-S, Lee JH, Ho C-T, Pan M-H (2011) Rosmanol potently induces apoptosis through both the mitochondrial apoptotic pathway and death receptor pathway in human colon adenocarcinoma COLO 205 cells. Food Chem Toxicol 49(2):485–493

    CAS  PubMed  Google Scholar 

  • Cheng M, Liang XH, Wang QW, Deng YT, Zhao ZX, Liu XY (2019) Ursolic acid prevents retinoic acid-induced bone loss in rats. Chin J Integr Med 25(3):210–215. https://doi.org/10.1007/s11655-018-3050-y

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN, Kerimi A, Williamson G (2020) Bioavailability and metabolism of chlorogenic acids (acyl‐quinic acids) in humans. Compr Rev Food Sci Food Saf

  • Collins MA, Charles HP (1987) Antimicrobial activity of Carnosol and Ursolic acid: two anti-oxidant constituents of Rosmarinus officinalis L. Food Microbiol 4(4):311–315. https://doi.org/10.1016/s0740-0020(87)80005-9

    Article  CAS  Google Scholar 

  • Conde-Hernández LA, Espinosa-Victoria JR, Trejo A, Guerrero-Beltrán JÁ (2017) CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J Food Eng 200:81–86

    Google Scholar 

  • Cova D, De Angelis L, Giavarini F, Palladini G, Perego R (1992) Pharmacokinetics and metabolism of oral diosmin in healthy volunteers. Int J Clin Pharmacol Therapy Toxicol 30(1):29

    CAS  Google Scholar 

  • Cui HY, Zhang XJ, Yang Y, Zhang C, Zhu CH, Miao JY, Chen R (2018) Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen Res 13(12):2119–2128. https://doi.org/10.4103/1673-5374.241463

    Article  PubMed  PubMed Central  Google Scholar 

  • da Rosa JS, Facchin BM, Bastos J, Siqueira MA, Micke GA, Dalmarco EM, Pizzolatti MG, Frode TS (2013) Systemic administration of Rosmarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy. Planta Med 79(17):1605–1614. https://doi.org/10.1055/s-0033-1351018

    Article  CAS  PubMed  Google Scholar 

  • da Silva SB, Amorim M, Fonte P, Madureira R, Ferreira D, Pintado M, Sarmento B (2015) Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharm Biol 53(5):642–652

    PubMed  Google Scholar 

  • De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Res Int 44(3):693–702. https://doi.org/10.1016/j.foodres.2010.12.032

    Article  CAS  Google Scholar 

  • de Oliveira MR (2016) The dietary components carnosic acid and carnosol as neuroprotective agents: a mechanistic view. Mol Neurobiol 53(9):6155–6168

    PubMed  Google Scholar 

  • de Melo GAN, Grespan R, Fonseca JP, Farinha TO, Silva EL, Romero AL, Bersani-Amado CA, Cuman RKN (2011) Rosmarinus officinalis L. essential oil inhibits in vivo and in vitro leukocyte migration. J Med Food 14(9):944–946

    Google Scholar 

  • de Sousa EL, Farias TC, Ferreira SB, Ferreira PB, Lima ZN, Ferreira SB (2018) Antibacterial activity and time-kill kinetics of positive enantiomer of alpha-pinene against strains of Staphylococcus aureus and Escherichia coli. Curr Top Med Chem 18(11):917–924. https://doi.org/10.2174/1568026618666180712093914

    Article  CAS  Google Scholar 

  • de Souza GE, Adrian Enache T, Maria Oliveira-Brett A (2013) Redox behaviour of verbascoside and rosmarinic acid. Comb Chem High Throughput Screening 16(2):92–97

    Google Scholar 

  • del Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, Marin MP, Del Rio JA, Ortuno A, Ibarra I (2004) Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis postulation of a biosynthetic pathway. J Agric Food Chem 52(16):4987–4992. https://doi.org/10.1021/jf040078p

    Article  CAS  PubMed  Google Scholar 

  • del Pilar S-C, Valdés A, Sullini G, García-Cañas V, Cifuentes A, Ibáñez E, Herrero M (2014) Two-step sequential supercritical fluid extracts from rosemary with enhanced anti-proliferative activity. J Funct Foods 11:293–303

    Google Scholar 

  • Deng C, Gao C, Tian X, Chao B, Wang F, Zhang Y, Zou J, Liu D (2017) Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites in rats: metabolites predominate in blood, tissues and are mainly excreted via bile. J Funct Foods 35:332–340

    CAS  Google Scholar 

  • Domínguez R, Muñoz R, Araiza H Sequential injection analysis system for electronic tongues modelling and calibration process. In: 2010. IEEE, pp 280–284

  • Dong X, Zhang J, Yang F, Wu J, Cai R, Wang T, Zhang J (2018) Effect of luteolin on the methylation status of the OPCML gene and cell growth in breast cancer cells. Exp Ther Med 16(4):3186–3194. https://doi.org/10.3892/etm.2018.6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolaege EH, Raes K, De Vos F, Verhe R, De Smet S (2011) Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Foods Hum Nutr 66(2):196–202. https://doi.org/10.1007/s11130-011-0233-5

    Article  CAS  PubMed  Google Scholar 

  • Dorrie J, Sapala K, Zunino SJ (2001) Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. Cancer Lett 170(1):33–39. https://doi.org/10.1016/s0304-3835(01)00549-3

    Article  CAS  PubMed  Google Scholar 

  • Elmazoglu Z, Yar Saglam AS, Sonmez C, Karasu C (2018) Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways. Drug Chem Toxicol 1–8

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EMA (2010) Community herbal monograph on Rosmarinus officinalis L., aetheroleum. European Medicines Agency. https://www.ema.europa.eu/en/medicines/herbal/rosmarini-aetheroleum. Accessed 06.12.2019

  • Endrini S, Rahmat A, Ismail P, Hin TY (2002) Anticarcinogenic properties and antioxidant activity of henna (Lawsonia inermis). J Med Sci 2(4):194–197

    Google Scholar 

  • Erkan N (2013) Stability of some phenolic antioxidants and linoleic acid in solution under microwave and conventional heating conditions. Focus Modern Food Ind 2:179–184

    Google Scholar 

  • Espindola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, Vieira APO, Monteiro MC (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9:541. https://doi.org/10.3389/fonc.2019.00541

    Article  PubMed  PubMed Central  Google Scholar 

  • Etsassala NG, Adeloye AO, El-Halawany A, Hussein AA, Iwuoha EI (2019) Investigation of in-vitro antioxidant and electrochemical activities of isolated compounds from salvia chamelaeagnea PJ Bergius extract. Antioxidants 8(4):98

    CAS  PubMed Central  Google Scholar 

  • European pharmacopoeia (2011). 9 edn. Council of Europe, Strabourg

  • Fadel O, El Kirat K, Morandat S (2011) The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochim Biophys Acta 1808(12):2973–2980. https://doi.org/10.1016/j.bbamem.2011.08.011

  • Fahim FA, Esmat AY, Fadel HM, Hassan KF (1999) Allied studies on the effect of Rosmarinus officinalis L. on experimental hepatotoxicity and mutagenesis. Int J Food Sci Nutr 50(6):413–427. https://doi.org/10.1080/096374899100987

    Article  CAS  PubMed  Google Scholar 

  • Falé PL, Ascensão L, Serralheiro ML (2013) Effect of luteolin and apigenin on rosmarinic acid bioavailability in Caco-2 cell monolayers. Food Funct 4(3):426–431

    PubMed  Google Scholar 

  • Farshchi HK, Azizi M, Jaafari MR, Nemati SH, Fotovat A (2018) Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatal Agric Biotechnol 16:54–62

    Google Scholar 

  • Ferlemi AV, Katsikoudi A, Kontogianni VG, Kellici TF, Iatrou G, Lamari FN, Tzakos AG, Margarity M (2015) Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies. Chem Biol Interact 237:47–57. https://doi.org/10.1016/j.cbi.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Ochoa Á, Borrás-Linares I, Pérez-Sánchez A, Barrajón-Catalán E, González-Álvarez I, Arráez-Román D, Micol V, Segura-Carretero A (2017) Phenolic compounds in rosemary as potential source of bioactive compounds against colorectal cancer: In situ absorption and metabolism study. J Funct Foods 33:202–210

    Google Scholar 

  • Filly A, Fernandez X, Minuti M, Visinoni F, Cravotto G, Chemat F (2014) Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem 150:193–198. https://doi.org/10.1016/j.foodchem.2013.10.139

    Article  CAS  PubMed  Google Scholar 

  • Furlan V, Bren U (2020) Protective effects of [6]-gingerol against chemical carcinogens: mechanistic insights. Int J Mol Sci 21(3):695. https://doi.org/10.3390/ijms21030695

    Article  CAS  PubMed Central  Google Scholar 

  • Furlan V, Konc J, Bren U (2018) Inverse molecular docking as a novel approach to study anticarcinogenic and anti-neuroinflammatory effects of curcumin. Molecules 23(12):3351. https://doi.org/10.3390/molecules23123351

    Article  CAS  PubMed Central  Google Scholar 

  • Furtado RA, De Araujo FRR, Resende FA, Cunha WR, Tavares DC (2010) Protective effect of rosmarinic acid on V79 cells evaluated by the micronucleus and comet assays. J Appl Toxicol Int J 30(3):254–259

    CAS  Google Scholar 

  • Ge ZQ, Du XY, Huang XN, Qiao B (2015) Enhanced oral bioavailability of ursolic acid nanoparticles via antisolvent precipitation with TPGS1000 as a stabilizer. J Drug Deliv Sci Technol 29:210–217. https://doi.org/10.1016/j.jddst.2015.08.001

    Article  CAS  Google Scholar 

  • Gong XX, Su XS, Zhan K, Zhao GQ (2018) The protective effect of chlorogenic acid on bovine mammary epithelial cells and neutrophil function. J Dairy Sci 101(11):10089–10097. https://doi.org/10.3168/jds.2017-14328

    Article  CAS  PubMed  Google Scholar 

  • Gonthier M-P, Verny M-A, Besson C, Rémésy C, Scalbert A (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133(6):1853–1859

    CAS  PubMed  Google Scholar 

  • Gonthier MP, Remesy C, Scalbert A, Cheynier V, Souquet JM, Poutanen K, Aura AM (2006) Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed Pharmacother 60(9):536–540. https://doi.org/10.1016/j.biopha.2006.07.084

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Trujano ME, Pena EI, Martinez AL, Moreno J, Guevara-Fefer P, Deciga-Campos M, Lopez-Munoz FJ (2007) Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents. J Ethnopharmacol 111(3):476–482. https://doi.org/10.1016/j.jep.2006.12.011

    Article  CAS  PubMed  Google Scholar 

  • Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18(1):241–272

    Google Scholar 

  • Gradolatto A, Basly J-P, Berges R, Teyssier C, Chagnon M-C, Siess M-H, Canivenc-Lavier M-C (2005) Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos 33(1):49–54

    CAS  PubMed  Google Scholar 

  • Habtemariam S (2017) Antidiabetic potential of monoterpenes: a case of small molecules punching above their weight. Int J Mol Sci 19(1):4. https://doi.org/10.3390/ijms19010004

    Article  CAS  PubMed Central  Google Scholar 

  • Han JP, Shi LC, Chen XC, Lin YL (2012) Comparison of four DNA barcodes in identifying certain medicinal plants of Lamiaceae. J Syst Evol 50(3):227–234

    Google Scholar 

  • Han S, Li X, Xia Y, Yu Z, Cai N, Malwal SR, Han X, Oldfield E, Zhang Y (2019) Farnesyl pyrophosphate synthase as a target for drug development: discovery of natural-product-derived inhibitors and their activity in pancreatic cancer cells. J Med Chem 62(23):10867–10896

    CAS  PubMed  Google Scholar 

  • Haraguchi H, Saito T, Okamura N, Yagi A (1995) Inhibition of lipid peroxidation and superoxide generation by diterpenoids from Rosmarinus officinalis. Planta Med 61(4):333–336. https://doi.org/10.1055/s-2006-958094

    Article  CAS  PubMed  Google Scholar 

  • Hariram Nile S, Won Park S (2013) Optimized methods for in vitro and in vivo anti-inflammatory assays and its applications in herbal and synthetic drug analysis. Mini Rev Med Chem 13(1):95–100

    Google Scholar 

  • Hernandez DA, Tenorio FJ (2018) Reactivity indexes of antioxidant molecules from Rosmarinus officinalis. Struct Chem 29(3):741–751

    CAS  Google Scholar 

  • Herrero M, Plaza M, Cifuentes A, Ibanez E (2010) Green processes for the extraction of bioactives from Rosemary: chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J Chromatogr A 1217(16):2512–2520. https://doi.org/10.1016/j.chroma.2009.11.032

    Article  CAS  PubMed  Google Scholar 

  • Ho C-T, Ferraro T, Chen Q, Rosen RT, Huang M-T (1994) Phytochemicals in teas and rosemary and their cancer-preventive properties. In: Food phytochemicals for cancer prevention II, vol 547. ACS Symposium Series, vol 547. American Chemical Society, pp 2–19

  • Hoefler C, Fleurentin J, Mortier F, Pelt JM, Guillemain J (1987) Comparative choleretic and hepatoprotective properties of young sprouts and total plant extracts of Rosmarinus officinalis in rats. J Ethnopharmacol 19(2):133–143. https://doi.org/10.1016/0378-8741(87)90037-7

    Article  CAS  PubMed  Google Scholar 

  • Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J (2019) Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem Rev 18(3):929–951

    CAS  Google Scholar 

  • Hosseinzadeh H, Nourbakhsh M (2003) Effect of Rosmarinus officinalis L aerial parts extract on morphine withdrawal syndrome in mice. Phytother Res 17(8):938–941. https://doi.org/10.1002/ptr.1311

    Article  PubMed  Google Scholar 

  • Hostnik G, Gladović M, Bren U (2019) Tannin basic building blocks as potential scavengers of chemical carcinogens: a computational study. J Nat Prod 82(12):3279–3287

    CAS  PubMed  Google Scholar 

  • Huang MT, Ho CT, Wang ZY, Ferraro T, Lou YR, Stauber K, Ma W, Georgiadis C, Laskin JD, Conney AH (1994) Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res 54(3):701–708

    CAS  PubMed  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856. https://doi.org/10.1021/jf030723c

    Article  CAS  PubMed  Google Scholar 

  • Hussain AI, Anwar F, Chatha SA, Jabbar A, Mahboob S, Nigam PS (2010) Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Braz J Microbiol 41(4):1070–1078. https://doi.org/10.1590/S1517-838220100004000027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibañez E, Kubátová A, Señoráns FJ, Cavero S, Reglero G, Hawthorne SB (2003) Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem 51(2):375–382. https://doi.org/10.1021/jf025878j

    Article  CAS  PubMed  Google Scholar 

  • Ibarra A, Cases J, Bily A, He K, Bai N, Roller M, Coussaert A, Ripoll C (2010) Importance of extract standardization and in vitro/ex vivo assay selection for the evaluation of antioxidant activity of botanicals: a case study on three Rosmarinus officinalis L. extracts. Journal of medicinal food 13 (5):1167–1175

  • Ilarionova M (1992) Cytotoxic effect on leukemic cells of the essential oils from rosemary, wild geranium and nettle and concret of royal bulgarian rose. Anticancer Res 12:1915

    Google Scholar 

  • Jacotet-Navarro M, Rombaut N, Fabiano-Tixier AS, Danguien M, Bily A, Chemat F (2015) Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrason Sonochem 27:102–109. https://doi.org/10.1016/j.ultsonch.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  • Janero DR (1990) Malondialdehyde and Thiobarbituric Acid-Reactivity as Diagnostic Indexes of Lipid-Peroxidation and Peroxidative Tissue-Injury. Free Radical Biol Med 9(6):515–540. https://doi.org/10.1016/0891-5849(90)90131-2

    Article  CAS  Google Scholar 

  • Jeong DW, Kim YH, Kim HH, Ji HY, Yoo SD, Choi WR, Lee SM, Han CK, Lee HS (2007) Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm Drug Dispos 28(2):51–57

    CAS  PubMed  Google Scholar 

  • Jia SS, Xi GP, Zhang M, Chen YB, Lei B, Dong XS, Yang YM (2013) Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol Rep 29(1):349–354. https://doi.org/10.3892/or.2012.2093

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, Zu YG, Liu XL (2011) Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol Pharmacol 32(1):63–68. https://doi.org/10.1016/j.etap.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  • Jing Z, Wang C, Yang Q, Wei X, Jin Y, Meng Q, Liu Q, Liu Z, Ma X, Liu K, Sun H, Liu M (2019) Luteolin attenuates glucocorticoid-induced osteoporosis by regulating ERK/Lrp-5/GSK-3beta signaling pathway in vivo and in vitro. J Cell Physiol 234(4):4472–4490. https://doi.org/10.1002/jcp.27252

    Article  CAS  PubMed  Google Scholar 

  • Jo BG, Park NJ, Jegal J, Choi S, Lee SW, Yi LW, Kim SN, Yang MH (2019) Stellera chamaejasme and Its Main Compound Luteolin 7-O-Glucoside Alleviates Skin Lesions in Oxazolone- and 2,4-Dinitrochlorobenzene-Stimulated Murine Models of Atopic Dermatitis. Planta Med 85(7):583–590. https://doi.org/10.1055/a-0746-8698

    Article  CAS  PubMed  Google Scholar 

  • Ju C, Song S, Hwang S, Kim C, Kim M, Gu J, Oh YK, Lee K, Kwon J, Lee K, Kim WK, Choi Y (2013) Discovery of novel (1S)-(-)-verbenone derivatives with anti-oxidant and anti-ischemic effects. Bioorg Med Chem Lett 23(19):5421–5425. https://doi.org/10.1016/j.bmcl.2013.07.038

    Article  CAS  PubMed  Google Scholar 

  • Kabala-Dzik A, Rzepecka-Stojko A, Kubina R, Jastrzębska-Stojko Ż, Rl S, Wojtyczka R, Stojko J (2017) Migration rate inhibition of breast cancer cells treated by caffeic acid and caffeic acid phenethyl ester: an in vitro comparison study. Nutrients 9(10):1144

    PubMed Central  Google Scholar 

  • Kar S, Palit S, Ball WB, Das PK (2012) Carnosic acid modulates Akt/IKK/NF-kappaB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis 17(7):735–747. https://doi.org/10.1007/s10495-012-0715-4

    Article  CAS  PubMed  Google Scholar 

  • Kashyap D, Tuli HS, Sharma AK (2016) Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci 146:201–213. https://doi.org/10.1016/j.lfs.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  • Kauderer B, Zamith H, Paumgartten FJ, Speit G (1991) Evaluation of the mutagenicity of beta-myrcene in mammalian cells in vitro. Environ Mol Mutagen 18(1):28–34. https://doi.org/10.1002/em.2850180106

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann A (2014) Combining UHPLC and high-resolution MS: a viable approach for the analysis of complex samples? TrAC, Trends Anal Chem 63:113–128

    CAS  Google Scholar 

  • Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422. https://doi.org/10.1007/s13197-011-0251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepa M, Miklasinska-Majdanik M, Wojtyczka RD, Idzik D, Korzeniowski K, Smolen-Dzirba J, Wasik TJ (2018) Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. Biomed Res Int 2018:7413504. https://doi.org/10.1155/2018/7413504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-S, Lee H-J, Jeon Y-D, Han Y-H, Kee J-Y, Kim H-J, Shin H-J, Kang J, Lee BS, Kim S-H (2015) Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med 43(04):731–742

    CAS  PubMed  Google Scholar 

  • Kim GJ, Jo HJ, Lee KJ, Choi JW, An JH (2018) Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice. Oncotarget 9(41):26370–26386. https://doi.org/10.18632/oncotarget.25316

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MG, Kim SM, Min JH, Kwon OK, Park MH, Park JW, Ahn HI, Hwang JY, Oh SR, Lee JW, Ahn KS (2019) Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int Immunopharmacol 74:105706. https://doi.org/10.1016/j.intimp.2019.105706

    Article  CAS  PubMed  Google Scholar 

  • Kivilompolo M, Hyotylainen T (2007) Comprehensive two-dimensional liquid chromatography in analysis of Lamiaceae herbs: characterisation and quantification of antioxidant phenolic acids. J Chromatogr A 1145(1–2):155–164. https://doi.org/10.1016/j.chroma.2007.01.090

    Article  CAS  PubMed  Google Scholar 

  • Klancnik A, Guzej B, Kolar MH, Abramovic H, Mozina SS (2009) In vitro antimicrobial and antioxidant activity of commercial rosemary extract formulations. J Food Prot 72(8):1744–1752. https://doi.org/10.4315/0362-028x-72.8.1744

    Article  CAS  PubMed  Google Scholar 

  • Kocevar Glavac N (2018) Pridobivanje in vrednotenje rastlinskih izvleckov = Production and evaluation of herbal extracts. Farmacevtski vestnik 69:259–264

    Google Scholar 

  • Kolassa N (2013) Menthol differs from other terpenic essential oil constituents. Regul Toxicol Pharmacol 65(1):115–118. https://doi.org/10.1016/j.yrtph.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Huo G, Liu S, Li F, Chen W, Jiang D (2019) Luteolin suppresses inflammation through inhibiting cAMP-phosphodiesterases activity and expression of adhesion molecules in microvascular endothelial cells. Inflammopharmacology 27(4):773–780. https://doi.org/10.1007/s10787-018-0537-2

    Article  CAS  PubMed  Google Scholar 

  • Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic-Grujicic S, Stojanovic I, Gerothanassis IP, Tzakos AG (2013) Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem 136(1):120–129. https://doi.org/10.1016/j.foodchem.2012.07.091

    Article  CAS  PubMed  Google Scholar 

  • Kores K, Lešnik S, Bren U, Da J, Konc J (2019) Discovery of novel potential human targets of resveratrol by inverse molecular docking. J Chem Inf Model 59(5):2467–2478

    CAS  PubMed  Google Scholar 

  • Kuhlmann A, Rohl C (2006) Phenolic antioxidant compounds produced by in vitro cultures of rosemary Rosmarinus officinalis and their anti-inflammatory effect on lipopolysaccharide-activated microglia. Pharm Biol 44(6):401–410. https://doi.org/10.1080/13880200600794063

    Article  CAS  Google Scholar 

  • Kumar MS, Kumar S, Raja B (2010) Antihypertensive and antioxidant potential of borneol-A natural terpene in L-NAME-induced hypertensive rats. Int J Pharm Biol Arch 1:271–279

    Google Scholar 

  • Kuo CF, Su JD, Chiu CH, Peng CC, Chang CH, Sung TY, Huang SH, Lee WC, Chyau CC (2011) Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves. J Agric Food Chem 59(8):3674–3685. https://doi.org/10.1021/jf104837w

    Article  CAS  PubMed  Google Scholar 

  • Kuranov SO, Tsypysheva IP, Khvostov MV, Zainullina LF, Borisevich SS, Vakhitova YV, Luzina OA, Salakhutdinov NF (2018) Synthesis and evaluation of camphor and cytisine-based cyanopyrrolidines as DPP-IV inhibitors for the treatment of type 2 diabetes mellitus. Bioorg Med Chem 26(15):4402–4409. https://doi.org/10.1016/j.bmc.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  • Lai C-S, Lee JH, Ho C-T, Liu CB, Wang J-M, Wang Y-J, Pan M-H (2009) Rosmanol potently inhibits lipopolysaccharide-induced iNOS and COX-2 expression through downregulating MAPK, NF-κB, STAT3 and C/EBP signaling pathways. J Agric Food Chem 57(22):10990–10998

    CAS  PubMed  Google Scholar 

  • Lai YN, Li Y, Fu LC, Zhao F, Liu N, Zhang FX, Xu PP (2017) Combinations of 1,8-cineol and oseltamivir for the treatment of influenza virus A (H3N2) infection in mice. J Med Virol 89(7):1158–1167. https://doi.org/10.1002/jmv.24755

    Article  CAS  PubMed  Google Scholar 

  • Lall RK, Syed DN, Adhami VM, Khan MI, Mukhtar H (2015) Dietary polyphenols in prevention and treatment of prostate cancer. Int J Mol Sci 16(2):3350–3376. https://doi.org/10.3390/ijms16023350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Jung E, Koh J, Kim YS, Park D (2008) Effect of rosmarinic acid on atopic dermatitis. J Dermatol 35(12):768–771. https://doi.org/10.1111/j.1346-8138.2008.00565.x

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Yang E-J, Ku S-K, Song K-S, Bae J-S (2013) Anti-inflammatory effects of oleanolic acid on LPS-induced inflammation in vitro and in vivo. Inflammation 36(1):94–102

    CAS  PubMed  Google Scholar 

  • Lee D, Kim KH, Lee J, Hwang GS, Lee HL, Hahm DH, Huh CK, Lee SC, Lee S, Kang KS (2017a) Protective effect of cirsimaritin against streptozotocin-induced apoptosis in pancreatic beta cells. J Pharm Pharmacol 69(7):875–883. https://doi.org/10.1111/jphp.12719

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Hwang CJ, Choi JY, Park MH, Song MJ, Oh KW, Son DJ, Lee SH, Han SB, Hong JT (2017b) Inhibitory effect of carnosol on phthalic anhydride-induced atopic dermatitis via inhibition of STAT3. Biomol Ther (Seoul) 25(5):535–544. https://doi.org/10.4062/biomolther.2017.006

    Article  CAS  PubMed Central  Google Scholar 

  • Lee KC, Chen YL, Lin PY, Chuang WL (2018) Ursolic acid-induced apoptosis via regulation of the PI3K/Akt and MAPK signaling pathways in Huh-7 cells. Molecules 23(8):2016. https://doi.org/10.3390/molecules23082016

    Article  CAS  PubMed Central  Google Scholar 

  • Lee KH, Lee J-S, Kim ES, Lee HG (2019) Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT 101:138–144

    CAS  Google Scholar 

  • Lemos MF, Lemos MF, Pacheco HP, Endringer DC, Scherer R (2015) Seasonality modifies rosemary’s composition and biological activity. Ind Crops Prod 70:41–47

    CAS  Google Scholar 

  • Li X, Yu C, Lu Y, Gu Y, Lu J, Xu W, Xuan L, Wang Y (2007) Pharmacokinetics, tissue distribution, metabolism, and excretion of depside salts from Salvia miltiorrhiza in rats. Drug Metab Dispos 35(2):234–239

    CAS  PubMed  Google Scholar 

  • Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB (2014a) Resources and biological activities of natural polyphenols. Nutrients 6(12):6020–6047. https://doi.org/10.3390/nu6126020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Howe N, Dukkipati A, Shah ST, Bax BD, Edge C, Bridges A, Hardwicke P, Singh OM, Giblin G (2014b) Crystallizing membrane proteins in the lipidic mesophase. Experience with human prostaglandin E2 synthase 1 and an evolving strategy. Cryst Growth Des 14(4):2034–2047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Hong B, Li Z, Li Q, Bi K (2018) GC-MS method for determination and pharmacokinetic study of seven volatile constituents in rat plasma after oral administration of the essential oil of Rhizoma Curcumae. J Pharm Biomed Anal 149:577–585. https://doi.org/10.1016/j.jpba.2017.11.058

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Xu Y, Cao M, Huan Y, Zhu L, Jiang Y, Shen W, Zhu G (2018) Luteolin induces apoptosis and autophagy in mouse macrophage ANA-1 Cells via the Bcl-2 pathway. J Immunol Res 2018:4623919. https://doi.org/10.1155/2018/4623919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin KI, Lin CC, Kuo SM, Lai JC, Wang YQ, You HL, Hsu ML, Chen CH, Shiu LY (2018) Carnosic acid impedes cell growth and enhances anticancer effects of carmustine and lomustine in melanoma. Biosci Rep 38(4):BSR20180005. https://doi.org/10.1042/BSR20180005

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T, Sui X, Zhang R, Yang L, Zu Y, Zhang L, Zhang Y, Zhang Z (2011) Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis. J Chromatogr A 1218(47):8480–8489. https://doi.org/10.1016/j.chroma.2011.09.073

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Chen Y, Lu C, Chen H, Deng J, Yan Y, Xu YY, Liu H, Huang H, Wei J, Han L, Dai Z (2019) Betulinic acid suppresses Th17 response and ameliorates psoriasis-like murine skin inflammation. Int Immunopharmacol 73:343–352. https://doi.org/10.1016/j.intimp.2019.05.030

    Article  CAS  PubMed  Google Scholar 

  • Lo Presti M, Ragusa S, Trozzi A, Dugo P, Visinoni F, Fazio A, Dugo G, Mondello L (2005) A comparison between different techniques for the isolation of rosemary essential oil. J Sep Sci 28(3):273–280

    CAS  Google Scholar 

  • Lopez-Sebastian S, Ramos E, Ibanez E, Bueno JM, Ballester L, Tabera J, Reglero G (1998) Dearomatization of antioxidant rosemary extracts by treatment with supercritical carbon dioxide. J Agric Food Chem 46(1):13–19. https://doi.org/10.1021/jf970565n

    Article  CAS  PubMed  Google Scholar 

  • Luis JC, Perez RM, Gonzalez FV (2007) UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chem 101(3):1211–1215. https://doi.org/10.1016/j.foodchem.2006.03.023

    Article  CAS  Google Scholar 

  • Luqman S, Dwivedi GR, Darokar MP, Kalra A, Khanuja SPS (2007) Potential of rosemary oil to be used in drug-resistant infections. Altern Ther Health Med 13(5):54–59

    PubMed  Google Scholar 

  • Ma ZJ, Yan H, Wang YJ, Yang Y, Li XB, Shi AC, Jing-Wen X, Yu-Bao L, Li L, Wang XX (2018) Proteomics analysis demonstrating rosmarinic acid suppresses cell growth by blocking the glycolytic pathway in human HepG2 cells. Biomed Pharmacother 105:334–349. https://doi.org/10.1016/j.biopha.2018.05.129

    Article  CAS  PubMed  Google Scholar 

  • Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, Rodrigues AL (2009) Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 33(4):642–650. https://doi.org/10.1016/j.pnpbp.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  • Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LE, Oliveira A, Pazini FL, Dalmarco JB, Simionatto EL, Pizzolatti MG, Rodrigues AL (2013) Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem 136(2):999–1005. https://doi.org/10.1016/j.foodchem.2012.09.028

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2008) Brock biology of microorganisms 12th edn. Int Microbiol 11:65–73

    Google Scholar 

  • Madureira AR, Campos DA, Fonte P, Nunes S, Reis F, Gomes AM, Sarmento B, Pintado MM (2015) Characterization of solid lipid nanoparticles produced with carnauba wax for rosmarinic acid oral delivery. Rsc Adv 5(29):22665–22673. https://doi.org/10.1039/c4ra15802d

    Article  CAS  Google Scholar 

  • Maione F, Cantone V, Pace S, Chini MG, Bisio A, Romussi G, Pieretti S, Werz O, Koeberle A, Mascolo N (2017) Anti-inflammatory and analgesic activity of carnosol and carnosic acid in vivo and in vitro and in silico analysis of their target interactions. Br J Pharmacol 174(11):1497–1508

    CAS  PubMed  Google Scholar 

  • Maistro EL, Mota S, Lima E, Bernardes B, Goulart F (2010) Genotoxicity and mutagenicity of Rosmarinus officinalis (Labiatae) essential oil in mammalian cells in vivo. Genet Mol Res 2113–2122

  • Mander S, Kim DH, Thi Nguyen H, Yong HJ, Pahk K, Kim EY, Lee K, Seong JY, Kim WK, Hwang JI (2019) SP-8356, a (1S)-(-)-verbenone derivative, exerts in vitro and in vivo anti-breast cancer effects by inhibiting NF-kappaB signaling. Sci Rep 9(1):6595. https://doi.org/10.1038/s41598-019-41224-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoharan RK, Lee JH, Lee J (2017) Antibiofilm and antihyphal activities of cedar leaf essential oil, camphor, and fenchone derivatives against candida albicans. Front Microbiol 8:1476. https://doi.org/10.3389/fmicb.2017.01476

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchiosi R, dos Santos WD, Constantin RP, de Lima RB, Soares AR, Finger-Teixeira A, Mota TR, de Oliveira DM, Foletto-Felipe MP, Abrahão J (2020) Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem Rev 19:865–906

    Google Scholar 

  • Marks DC, Belov L, Davey MW, Davey RA, Kidman AD (1992) The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leuk Res 16(12):1165–1173. https://doi.org/10.1016/0145-2126(92)90114-m

    Article  CAS  PubMed  Google Scholar 

  • Martín Á, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. The Open Chemical Engineering Journal 4 (1)

  • Martinez-Aledo N, Navas-Carrillo D, Orenes-Piñero E (2020) Medicinal plants: active compounds, properties and antiproliferative effects in colorectal cancer. Phytochemistry Reviews:1–15

  • Martins A, Rodrigues LB, Cesario F, de Oliveira MRC, Tintino CDM, Castro FFE, Alcantara IS, Fernandes MNM, de Albuquerque TR, da Silva MSA, de Sousa Araujo AA, Juniur LJQ, da Costa JGM, de Menezes IRA, Wanderley AG (2017) Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed Pharmacother 96:384–395. https://doi.org/10.1016/j.biopha.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Inaba Y, Maekawa T, Takeda Y, Tamura H, Yamaguchi H (2002) Recovery mechanism of the antioxidant activity from carnosic acid quinone, an oxidized sage and rosemary antioxidant. J Agric Food Chem 50(21):5863–5869. https://doi.org/10.1021/jf025605o

    Article  CAS  PubMed  Google Scholar 

  • Melo Junior JM, Damasceno MB, Santos SA, Barbosa TM, Araujo JR, Vieira-Neto AE, Wong DV, Lima-Junior RC, Campos AR (2017) Acute and neuropathic orofacial antinociceptive effect of eucalyptol. Inflammopharmacology 25(2):247–254. https://doi.org/10.1007/s10787-017-0324-5

    Article  CAS  PubMed  Google Scholar 

  • Mena P, Cirlini M, Tassotti M, Herrlinger KA, Dall’Asta C, Del Rio D (2016) Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 21(11):1576. https://doi.org/10.3390/molecules21111576

    Article  CAS  PubMed Central  Google Scholar 

  • Merghni A, Noumi E, Hadded O, Dridi N, Panwar H, Ceylan O, Mastouri M, Snoussi M (2018) Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb Pathog 118:74–80. https://doi.org/10.1016/j.micpath.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  • Mezza GN, Borgarello AV, Daguero JD, Pramparo MC (2013) Obtention of rosemary essential oil concentrates by molecular distillation and free radical scavenging capacity analysis. Int J Food Eng 9(2):147–153. https://doi.org/10.1515/ijfe-2013-0013

    Article  CAS  Google Scholar 

  • Mezza GN, Borgarello AV, Grosso NR, Fernandez H, Pramparo MC, Gayol MF (2018) Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem 242:9–15. https://doi.org/10.1016/j.foodchem.2017.09.042

    Article  CAS  PubMed  Google Scholar 

  • Min J, Shen H, Xi W, Wang Q, Yin L, Zhang Y, Yu Y, Yang Q, Wang ZN (2018) Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell Physiol Biochem 48(4):1433–1442. https://doi.org/10.1159/000492253

    Article  CAS  PubMed  Google Scholar 

  • Miraldi E, Giachetti D, Mazzoni G, Biagi M (2010) Quali-quantitative analysis of eight rosmarinus officinalis essential oils of different origin. First report. J Siena Acad Sci 2(1):42–43. https://doi.org/10.4081/jsas.2010.478

    Article  Google Scholar 

  • Mladenović M, Matić S, Stanić S, Solujić S, Mihailović V, Stanković N, Katanić J (2013) Combining molecular docking and 3-D pharmacophore generation to enclose the in vivo antigenotoxic activity of naturally occurring aromatic compounds: myricetin, quercetin, rutin, and rosmarinic acid. Biochem Pharmacol 86(9):1376–1396

    PubMed  Google Scholar 

  • Montenegro L, Pasquinucci L, Zappalà A, Chiechio S, Turnaturi R, Parenti C (2017) Rosemary essential oil-loaded lipid nanoparticles: In vivo topical activity from gel vehicles. Pharmaceutics 9(4):48

    PubMed Central  Google Scholar 

  • Moorthy IG, Maran JP, Ilakya S, Anitha SL, Sabarima SP, Priya B (2017) Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason Sonochem 34:525–530. https://doi.org/10.1016/j.ultsonch.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  • Moreno S, Scheyer T, Romano CS, Vojnov AA (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40(2):223–231. https://doi.org/10.1080/10715760500473834

    Article  CAS  PubMed  Google Scholar 

  • Morris CJ (2003) Carrageenan-induced paw edema in the rat and mouse. In: Inflammation protocols. Springer, pp 115–121

  • Moss M, Smith E, Milner M, McCready J (2018) Acute ingestion of rosemary water: evidence of cognitive and cerebrovascular effects in healthy adults. J Psychopharmacol 32(12):1319–1329. https://doi.org/10.1177/0269881118798339

    Article  CAS  PubMed  Google Scholar 

  • Mourya A, Akhtar A, Ahuja S, Sah SP, Kumar A (2018) Synergistic action of ursolic acid and metformin in experimental model of insulin resistance and related behavioral alterations. Eur J Pharmacol 835:31–40. https://doi.org/10.1016/j.ejphar.2018.07.056

    Article  CAS  PubMed  Google Scholar 

  • Mu HN, Li Q, Fan JY, Pan CS, Liu YY, Yan L, Sun K, Hu BH, Huang DD, Zhao XR, Chang X, Wang CS, He SY, He K, Yang BX, Han JY (2018) Caffeic acid attenuates rat liver injury after transplantation involving PDIA3-dependent regulation of NADPH oxidase. Free Radic Biol Med 129:202–214. https://doi.org/10.1016/j.freeradbiomed.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L, Schwarz K (2000) The formation of phenolic diterpenes in Rosmarinus officinalis L. under Mediterranean climate. Eur Food Res Technol 210(4):263–267

    Google Scholar 

  • Napoli EM, Siracusa L, Saija A, Speciale A, Trombetta D, Tuttolomondo T, La Bella S, Licata M, Virga G, Leone R, Leto C, Rubino L, Ruberto G (2015) Wild Sicilian rosemary: phytochemical and morphological screening and antioxidant activity evaluation of extracts and essential oils. Chem Biodivers 12(7):1075–1094. https://doi.org/10.1002/cbdv.201400274

    Article  CAS  PubMed  Google Scholar 

  • Nasr Bouzaiene N, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K (2016) Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 144:80–85. https://doi.org/10.1016/j.lfs.2015.11.030

    Article  CAS  PubMed  Google Scholar 

  • Nikolić B, Mitić-Ćulafić D, Vuković-Gačić B, Knežević-Vukčević J (2011) Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. Food Chem Toxicol 49(9):2035–2045

    PubMed  Google Scholar 

  • Nusier MK, Bataineh HN, Daradkah HM (2007) Adverse effects of rosemary (Rosmarinus officinalis L.) on reproductive function in adult male rats. Exp Biol Med (Maywood) 232(6):809–813. https://doi.org/10.3181/00379727-232-2320809

    Article  CAS  Google Scholar 

  • Ohara M, Ohyama Y (2014) Delivery and application of dietary polyphenols to target organs, tissues and intracellular organelles. Curr Drug Metab 15(1):37–47

    CAS  PubMed  Google Scholar 

  • Ojeda-Sana AM, van Baren CM, Elechosa MA, Juarez MA, Moreno S (2013) New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control 31(1):189–195. https://doi.org/10.1016/j.foodcont.2012.09.022

    Article  CAS  Google Scholar 

  • Olthof MR, Hollman PC, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71. https://doi.org/10.1093/jn/131.1.66

    Article  CAS  PubMed  Google Scholar 

  • Omar MH, Mullen W, Stalmach A, Auger C, Rouanet J-M, Teissedre P-L, Caldwell ST, Hartley RC, Crozier A (2012) Absorption, disposition, metabolism, and excretion of [3-14C] Caffeic Acid in Rats. J Agric Food Chem 60(20):5205–5214

    CAS  PubMed  Google Scholar 

  • Osakabe N, Takano H, Sanbongi C, Yasuda A, Yanagisawa R, Inoue K, Yoshikawa T (2004) Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. BioFactors 21(1–4):127–131. https://doi.org/10.1002/biof.552210125

    Article  CAS  PubMed  Google Scholar 

  • Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123(1):291–298. https://doi.org/10.1016/0006-291x(84)90411-x

    Article  CAS  PubMed  Google Scholar 

  • Özkan A, Erdoğan A (2013) Membrane and DNA damaging/protective effects of eugenol, eucalyptol, terpinen-4-ol, and camphor at various concentrations on parental and drug-resistant H1299 cells. Turkish J Biol 37(4):405–413

    Google Scholar 

  • Paduch R, Kandefer-Szerszen M, Trytek M, Fiedurek J (2007) Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp (Warsz) 55(5):315–327. https://doi.org/10.1007/s00005-007-0039-1

    Article  CAS  Google Scholar 

  • Panizzi L, Flamini G, Cioni PL, Morelli I (1993) Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J Ethnopharmacol 39(3):167–170. https://doi.org/10.1016/0378-8741(93)90032-z

    Article  CAS  PubMed  Google Scholar 

  • Peng CH, Su JD, Chyau CC, Sung TY, Ho SS, Peng CC, Peng RY (2007) Supercritical fluid extracts of rosemary leaves exhibit potent anti-inflammation and anti-tumor effects. Biosci Biotechnol Biochem 71(9):2223–2232. https://doi.org/10.1271/bbb.70199

    Article  CAS  PubMed  Google Scholar 

  • Pengelly A, Snow J, Mills SY, Scholey A, Wesnes K, Butler LR (2012) Short-term study on the effects of rosemary on cognitive function in an elderly population. J Med Food 15(1):10–17. https://doi.org/10.1089/jmf.2011.0005

    Article  PubMed  Google Scholar 

  • Perego R, Beccaglia P, Angelini M, Villa P, Cova D (1993) Pharmacokinetic studies of diosmin and diosmetin in perfused rat liver. Xenobiotica 23(12):1345–1352

    CAS  PubMed  Google Scholar 

  • Pereira P, Tysca D, Oliveira P, da Silva Brum LF, Picada JN, Ardenghi P (2005) Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res 52(3):199–203

    CAS  PubMed  Google Scholar 

  • Perez-Fons L, GarzÓn MT, Micol V (2009) Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem 58(1):161–171

    Google Scholar 

  • Perumal S, Langeshwaran K, Selvaraj J, Ponnulakshmi R, Shyamaladevi B, Balasubramanian MP (2018) Effect of diosmin on apoptotic signaling molecules in N-nitrosodiethylamine-induced hepatocellular carcinoma in experimental rats. Mol Cell Biochem 449(1–2):27–37. https://doi.org/10.1007/s11010-018-3339-3

    Article  CAS  PubMed  Google Scholar 

  • Petersen M (2013) Rosmarinic acid: new aspects. Phytochem Rev 12(1):207–227. https://doi.org/10.1007/s11101-013-9282-8

    Article  CAS  Google Scholar 

  • Petiwala SM, Berhe S, Li G, Puthenveetil AG, Rahman O, Nonn L, Johnson JJ (2014) Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth. PLoS ONE 9(3):e89772

    PubMed  PubMed Central  Google Scholar 

  • Pozo OJ, Pujadas M, Gleeson SB, Mesa-García MD, Pastor A, Kotronoulas A, Fitó M, Covas M-I, Navarro JRF, Espejo JA (2017) Liquid chromatography tandem mass spectrometric determination of triterpenes in human fluids: evaluation of markers of dietary intake of olive oil and metabolic disposition of oleanolic acid and maslinic acid in humans. Anal Chim Acta 990:84–95

    CAS  PubMed  Google Scholar 

  • Pukl M, Umek A, Pariš A, Štrukelf B, Renko M, Korant BD, Turk V (1992) Inhibitory effect of carnosolic acid on HIV-1 protease. Planta Med 58(S1):632–632

    Google Scholar 

  • Qabaha KI (2013) Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants. Afr J Tradit Complement Altern Med 10(4):101–108. https://doi.org/10.4314/ajtcam.v10i4.17

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi W, Zhao T, Yang W-W, Wang G-H, Yu H, Zhao H-X, Yang C, Sun L-X (2011) Comparative pharmacokinetics of chlorogenic acid after oral administration in rats. J Pharm Anal 1(4):270–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radziejewska I, Supruniuk K, Nazaruk J, Karna E, Poplawska B, Bielawska A, Galicka A (2018) Rosmarinic acid influences collagen, MMPs, TIMPs, glycosylation and MUC1 in CRL-1739 gastric cancer cell line. Biomed Pharmacother 107:397–407. https://doi.org/10.1016/j.biopha.2018.07.123

    Article  CAS  PubMed  Google Scholar 

  • Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52(5):507–526. https://doi.org/10.1002/mnfr.200700326

    Article  CAS  PubMed  Google Scholar 

  • Raskovic A, Milanovic I, Pavlovic N, Cebovic T, Vukmirovic S, Mikov M (2014) Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Altern Med 14(1):225. https://doi.org/10.1186/1472-6882-14-225

    Article  PubMed  PubMed Central  Google Scholar 

  • Raskovic A, Milanovic I, Pavlovic N, Milijasevic B, Ubavic M, Mikov M (2015) Analgesic effects of rosemary essential oil and its interactions with codeine and paracetamol in mice. Eur Rev Med Pharmacol Sci 19(1):165–172

    CAS  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PD (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular ecology notes 7 (3):355–364

  • Reichling J, Suschke U, Schneele J, Geiss HK (2006) Antibacterial activity and irritation potential of selected essential oil components–structure-activity relationship. Nat Prod Commun 1(11):1934

  • Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, Costa HS, Albuquerque TG, Castilho MC, Ramos F, Melo NR, Sanches-Silva A (2015) A novel insight on an ancient aromatic plant: the rosemary (Rosmarinus officinalis L.). Trends Food Sci Technol 45(2):355–368. https://doi.org/10.1016/j.tifs.2015.07.015

    Article  CAS  Google Scholar 

  • Ríos JL, Máñez S (2018) New pharmacological opportunities for betulinic acid. Planta Med 84(01):8–19

    PubMed  Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51(10):2866–2887. https://doi.org/10.1021/jf026182t

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21(6):801–810. https://doi.org/10.1016/s0149-7634(96)00058-9

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Meizoso I, Castro-Puyana M, Pa B, Mendiola JA, Turner C, Ibáñez E (2012) Life cycle assessment of green pilot-scale extraction processes to obtain potent antioxidants from rosemary leaves. J Supercrit Fluids 72:205–212

    Google Scholar 

  • Rodríguez-Rojo S, Visentin A, Maestri D, Cocero MJ (2012) Assisted extraction of rosemary antioxidants with green solvents. J Food Eng 109(1):98–103. https://doi.org/10.1016/j.jfoodeng.2011.09.029

    Article  CAS  Google Scholar 

  • Romo Vaquero M, Garcia Villalba R, Larrosa M, Yanez-Gascon MJ, Fromentin E, Flanagan J, Roller M, Tomas-Barberan FA, Espin JC, Garcia-Conesa MT (2013) Bioavailability of the major bioactive diterpenoids in a rosemary extract: metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol Nutr Food Res 57(10):1834–1846. https://doi.org/10.1002/mnfr.201300052

    Article  CAS  PubMed  Google Scholar 

  • Rufino AT, Ribeiro M, Sousa C, Judas F, Salgueiro L, Cavaleiro C, Mendes AF (2015) Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur J Pharmacol 750:141–150. https://doi.org/10.1016/j.ejphar.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  • Sadeh D, Nitzan N, Chaimovitsh D, Shachter A, Ghanim M, Dudai N (2019) Interactive effects of genotype, seasonality and extraction method on chemical compositions and yield of essential oil from rosemary (Rosmarinus officinalis L.). Ind Crops Prod 138:111419

    CAS  Google Scholar 

  • Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, Jayaweera LD, S, A Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, (2019) Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 9(11):738

    CAS  PubMed Central  Google Scholar 

  • Samarghandian S, Borji A, Farkhondeh T (2017) Evaluation of antidiabetic activity of carnosol (phenolic diterpene in rosemary) in streptozotocin-induced diabetic rats. Cardiovasc Hematol Disord Drug Targets 17(1):11–17. https://doi.org/10.2174/1871529X16666161229154910

    Article  CAS  PubMed  Google Scholar 

  • Sampath S, Subramani S, Janardhanam S, Subramani P, Yuvaraj A, Chellan R (2018) Bioactive compound 1,8-Cineole selectively induces G2/M arrest in A431 cells through the upregulation of the p53 signaling pathway and molecular docking studies. Phytomedicine 46:57–68. https://doi.org/10.1016/j.phymed.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Camargo ADP, García-Cañas V, Herrero M, Cifuentes A, Ibáñez E (2016b) Comparative study of green sub-and supercritical processes to obtain carnosic acid and carnosol-enriched rosemary extracts with in vitro anti-proliferative activity on colon cancer cells. Int J Mol Sci 17(12):2046

    PubMed Central  Google Scholar 

  • Sánchez-Camargo A, Mendiola J, Valdés A, Castro-Puyana M, García-Cañas V, Cifuentes A, Herrero M, Ibáñez E (2016a) Supercritical antisolvent fractionation of rosemary extracts obtained by pressurized liquid extraction to enhance their antiproliferative activity. J Supercrit Fluids 107:581–589

    Google Scholar 

  • Saraf S (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81(7):680–689

    PubMed  Google Scholar 

  • Sasaki K, El Omri A, Kondo S, Han J, Isoda H (2013) Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 238:86–94. https://doi.org/10.1016/j.bbr.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  • Schwarz K, Ternes W, Schmauderer E (1992) Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. III. Stability of phenolic diterpenes of rosemary extracts under thermal stress as required for technological processes. Z Lebensm Unters Forsch 195(2):104–107. https://doi.org/10.1007/BF01201767

    Article  CAS  PubMed  Google Scholar 

  • Selvamuthukumaran M, Shi J (2017) Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality Safety 1(1):61–81. https://doi.org/10.1093/fqs/fyx004

    Article  CAS  Google Scholar 

  • Shabani S, Mirshekar MA (2018) Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed Pharmacother 108:1376–1383. https://doi.org/10.1016/j.biopha.2018.09.127

    Article  CAS  PubMed  Google Scholar 

  • Shin HB, Choi MS, Ryu B, Lee NR, Kim HI, Choi HE, Chang J, Lee KT, Jang DS, Inn KS (2013) Antiviral activity of carnosic acid against respiratory syncytial virus. Virol J 10(1):303. https://doi.org/10.1186/1743-422X-10-303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sihvonen M, Jarvenpaa E, Hietaniemi V, Huopalahti R (1999) Advances in supercritical carbon dioxide technologies. Trends Food Sci Technol 10(6–7):217–222. https://doi.org/10.1016/S0924-2244(99)00049-7

    Article  CAS  Google Scholar 

  • Silva-Filho SE, de Souza Silva-Comar FM, Wiirzler LAM, do Pinho RJ, Grespan R, Bersani-Amado CA, Cuman RKN, (2014) Effect of camphor on the behavior of leukocytes in vitro and in vivo in acute inflammatory response. Trop J Pharm Res 13(12):2031–2037

    CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  • Singletary KW, Nelshoppen JM (1991) Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis and of in vivo formation of mammary DMBA-DNA adducts by rosemary extract. Cancer Lett 60(2):169–175. https://doi.org/10.1016/0304-3835(91)90224-6

    Article  CAS  PubMed  Google Scholar 

  • Singletary K, MacDonald C, Wallig M (1996) Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett 104(1):43–48. https://doi.org/10.1016/0304-3835(96)04227-9

    Article  CAS  PubMed  Google Scholar 

  • Siu AW, Reiter RJ, To CH (1998) The efficacy of vitamin E and melatonin as antioxidants against lipid peroxidation in rat retinal homogenates. J Pineal Res 24(4):239–244. https://doi.org/10.1111/j.1600-079x.1998.tb00539.x

    Article  CAS  PubMed  Google Scholar 

  • Sohraby F, Soltanabad MH, Bagheri M, Javan MB, Moghadam MJ, Baghkheirati EK, Najjar MBB (2020) Application of molecular dynamics in coating Ag-conjugated nanoparticles with potential therapeutic applications. Nano Biomed Eng 12(1):90–98

    CAS  Google Scholar 

  • Soliman F, El-Kashoury E, Fathy M, Gonaid M (1994) Analysis and biological activity of the essential oil of Rosmarinus officinalis L. from Egypt. Flavour Fragrance J 9(1):29–33

    CAS  Google Scholar 

  • Song Y, Zhang S, Liu H, Jin X (2013) Determination of genkwanin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a bioavailability study. J Pharm Biomed Anal 84:129–134

    CAS  PubMed  Google Scholar 

  • Song Y, Yan H, Chen J, Wang Y, Jiang Y, Tu P (2014) Characterization of in vitro and in vivo metabolites of carnosic acid, a natural antioxidant, by high performance liquid chromatography coupled with tandem mass spectrometry. J Pharm Biomed Anal 89:183–196

    CAS  PubMed  Google Scholar 

  • Song HM, Li X, Liu YY, Lu WP, Cui ZH, Zhou L, Yao D, Zhang HM (2018) Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med 42(1):193–207. https://doi.org/10.3892/ijmm.2018.3593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srithar G, Sudha M, Nalini N (2013) Linalool exerts dose dependent chemopreventive effect against 1, 2-dimethylhydrazine induced rat colon carcinogenesis. Int J Pharm Biol Arch 4:1231–1243

    Google Scholar 

  • Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30(18):3268–3295. https://doi.org/10.1002/jssc.200700261

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, Xu H (2020) Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia:104735

  • Taguchi R, Hatayama K, Takahashi T, Hayashi T, Sato Y, Sato D, Ohta K, Nakano H, Seki C, Endo Y (2017) Structure–activity relations of rosmarinic acid derivatives for the amyloid β aggregation inhibition and antioxidant properties. Eur J Med Chem 138:1066–1075

    CAS  PubMed  Google Scholar 

  • Tai J, Cheung S, Wu M, Hasman D (2012) Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 19(5):436–443. https://doi.org/10.1016/j.phymed.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Chen K, Huang L, Li J (2017) Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin Drug Metab Toxicol 13(3):323–330

    CAS  PubMed  Google Scholar 

  • Tanveer M, Wagner C, ul Haq MI, Ribeiro NC, Rathinasabapathy T, Butt MS, Shehzad A, Komarnytsky S (2020) Spicing up gastrointestinal health with dietary essential oils. Phytochem Rev 1–21

  • Thorsen MA, Hildebrandt KS (2003) Quantitative determination of phenolic diterpenes in rosemary extracts. Aspects of accurate quantification. J Chromatogr A 995(1–2):119–125. https://doi.org/10.1016/s0021-9673(03)00487-4

    Article  CAS  PubMed  Google Scholar 

  • Tongnuanchan P, Benjakul S (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 79(7):R1231-1249. https://doi.org/10.1111/1750-3841.12492

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Ikeda S, Uwai K, Taguchi R, Chayama K, Sakaguchi T, Narita R, Yao WL, Takeuchi F, Otakaki Y, Watashi K, Wakita T, Kato H, Fujita T (2018) Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS ONE 13(5):e0197664. https://doi.org/10.1371/journal.pone.0197664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Z, Moss-Pierce T, Ford P, Jiang TA (2013) Rosemary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells. J Agric Food Chem 61(11):2803–2810. https://doi.org/10.1021/jf400298c

    Article  CAS  PubMed  Google Scholar 

  • Tuttolomondo T, Dugo G, Ruberto G, Leto C, Napoli EM, Cicero N, Gervasi T, Virga G, Leone R, Licata M (2015) Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L. Nat Prod Res 29(20):1928–1934

    CAS  PubMed  Google Scholar 

  • Umek A, Kreft S, Kartnig T, Heydel B (1999) Quantitative phytochemical analyses of six hypericum species growing in slovenia. Planta Med 65(4):388–390. https://doi.org/10.1055/s-2006-960798

    Article  CAS  PubMed  Google Scholar 

  • Valdes A, Garcia-Canas V, Rocamora-Reverte L, Gomez-Martinez A, Ferragut JA, Cifuentes A (2013) Effect of rosemary polyphenols on human colon cancer cells: transcriptomic profiling and functional enrichment analysis. Genes Nutr 8(1):43–60. https://doi.org/10.1007/s12263-012-0311-9

    Article  CAS  PubMed  Google Scholar 

  • Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, Alvarenga JFR, Leal LN, Lamuela-Raventos RM (2014) A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem 154:299–307

    PubMed  Google Scholar 

  • Vázquez E, García-Risco MR, Jaime L, Reglero G, Fornari T (2013) Simultaneous extraction of rosemary and spinach leaves and its effect on the antioxidant activity of products. J Supercrit Fluids 82:138–145

    Google Scholar 

  • Vincent WM (2011) The complete guide to growing healing and medicinal herbs: everything you need to know explained simply. Atlantic publishing company

  • Visanji JM, Thompson DG, Padfield PJ (2006) Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett 237(1):130–136. https://doi.org/10.1016/j.canlet.2005.05.045

    Article  CAS  PubMed  Google Scholar 

  • Von Schönfeld C, Huber R, Trittler R, Kammerer B, Garcia-Käufer M, Gründemann C (2018) Rosemary has immunosuppressant activity mediated through the STAT3 pathway. Complementary Ther Med 40:165–170

    Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  • Vukelic I, Detel D, Pucar LB, Potocnjak I, Buljevic S, Domitrovic R (2018) Chlorogenic acid ameliorates experimental colitis in mice by suppressing signaling pathways involved in inflammatory response and apoptosis. Food Chem Toxicol 121:140–150. https://doi.org/10.1016/j.fct.2018.08.061

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhao XH (2017) Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells. Oncol Rep 37(2):1132–1140. https://doi.org/10.3892/or.2016.5303

    Article  CAS  PubMed  Google Scholar 

  • Wang HF, Provan GJ, Helliwell K (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 87(2):307–311. https://doi.org/10.1016/j.foodchem.2003.12.029

    Article  CAS  Google Scholar 

  • Wang CN, Duan GL, Liu YJ, Yu Q, Tang XL, Zhao W, Li XH, Zhu XY, Ni X (2015) Overproduction of nitric oxide by endothelial cells and macrophages contributes to mitochondrial oxidative stress in adrenocortical cells and adrenal insufficiency during endotoxemia. Free Radic Biol Med 83:31–40. https://doi.org/10.1016/j.freeradbiomed.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  • Wang JX, Li GY, Rui TQ, Kang A, Li GC, Fu TM, Li JS, Di LQ, Cai BC (2017) Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: absolute bioavailability and dose proportionality. RSC Adv 7(15):9057–9063. https://doi.org/10.1039/c6ra28237g

    Article  CAS  Google Scholar 

  • Wang LC, Wei WH, Zhang XW, Liu D, Zeng KW, Tu PF (2018a) An integrated proteomics and bioinformatics approach reveals the anti-inflammatory mechanism of carnosic acid. Front Pharmacol 9:370. https://doi.org/10.3389/fphar.2018.00370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TY, Li Q, Bi KS (2018b) Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 13(1):12–23. https://doi.org/10.1016/j.ajps.2017.08.004

    Article  PubMed  Google Scholar 

  • Wang L, Liang Q, Lin A, Wu Y, Min H, Song S, Wang Y, Wang H, Yi L, Gao Q (2019) Borneol alleviates brain injury in sepsis mice by blocking neuronal effect of endotoxin. Life Sci 232:116647. https://doi.org/10.1016/j.lfs.2019.116647

    Article  CAS  PubMed  Google Scholar 

  • WHO (2003) WHO guidelines on good agricultural and collection practices [GACP] for medicinal plants. World Health Organization

  • Wojdylo A, Oszmianski J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105(3):940–949. https://doi.org/10.1016/j.foodchem.2007.04.038

    Article  CAS  Google Scholar 

  • Wu Z-K, Wang J-J, Zhu S-S, Zhang J-Y, Wei J-H, Li L (2016) Cirsimaritin ameliorates cardiac remodeling and dysfunction through promoting myocardial autophagy in rats with heart failure. Int J Clin Exp Pathol 9(2):509–520

    CAS  Google Scholar 

  • Xiang Q, Ma Y, Dong J, Shen R (2015) Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells. Int J Food Sci Nutr 66(1):76–84. https://doi.org/10.3109/09637486.2014.953452

    Article  CAS  PubMed  Google Scholar 

  • Xu HL, Wang XT, Cheng Y, Zhao JG, Zhou YJ, Yang JJ, Qi MY (2018) Ursolic acid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomed Pharmacother 105:915–921. https://doi.org/10.1016/j.biopha.2018.06.055

    Article  CAS  PubMed  Google Scholar 

  • Yadav N, Chandra H (2017) Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFkappaB. PLoS ONE 12(11):e0188232. https://doi.org/10.1371/journal.pone.0188232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Sun Z, Zu Y, Zhao C, Sun X, Zhang Z, Zhang L (2012) Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process. Food Chem 132(1):319–325. https://doi.org/10.1016/j.foodchem.2011.10.083

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, He HJ, Chang H, Yu Y, Yang MB, He Y, Fan ZC, Iyer SS, Yu P (2018) Multivalent oleanolic acid human serum albumin conjugate as nonglycosylated neomucin for influenza virus capture and entry inhibition. Eur J Med Chem 143:1723–1731. https://doi.org/10.1016/j.ejmech.2017.10.070

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Mao J, Xu S, Zhao L, Long L, Chen L, Li D, Lu S (2019) Rosmarinic acid inhibits nicotine-induced C-reactive protein generation by inhibiting NLRP3 inflammasome activation in smooth muscle cells. J Cell Physiol 234(2):1758–1767. https://doi.org/10.1002/jcp.27046

    Article  CAS  PubMed  Google Scholar 

  • Yeddes W, Chalghoum A, Aidi-Wannes W, Ksouri R, Saidani Tounsi M (2019) Effect of bioclimatic area and season on phenolics and antioxidant activities of rosemary (Rosmarinus officinalis L.) leaves. J Essential Oil Res 31(5):432–443

    CAS  Google Scholar 

  • Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F (2010) Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr 65(2):158–163. https://doi.org/10.1007/s11130-010-0166-4

    Article  CAS  PubMed  Google Scholar 

  • Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D (2018) Refined exposure assessment of extracts of rosemary (E 392) from its use as food additive. EFSA J 16(8):e05373

    PubMed  PubMed Central  Google Scholar 

  • Yu MH, Choi JH, Chae IG, Im HG, Yang SA, More K, Lee IS, Lee J (2013) Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L. Food Chem 136(2):1047–1054. https://doi.org/10.1016/j.foodchem.2012.08.085

    Article  CAS  PubMed  Google Scholar 

  • Zabot GL, Moraes MN, Rostagno MICA, Meireles MAA (2014) Fast analysis of phenolic terpenes by high-performance liquid chromatography using a fused-core column. Anal Methods 6(18):7457–7468. https://doi.org/10.1039/c4ay01124d

    Article  CAS  Google Scholar 

  • Załuski D, Cieśla Ł, Janeczko Z (2015) The structure–activity relationships of plant secondary metabolites with antimicrobial, free radical scavenging and inhibitory activity toward selected enzymes. Studies in Natural Products Chemistry, vol 45. Elsevier, Amsterdam, pp 217–249

    Google Scholar 

  • Zanella CA, Treichel H, Cansian RL, Roman SS (2012) The effects of acute administration of the hydroalcoholic extract of rosemary (Rosmarinus officinalis L.) (Lamiaceae) in animal models of memory. Braz J Pharm Sci 48(3):389–397. https://doi.org/10.1590/S1984-82502012000300005

    Article  Google Scholar 

  • Žegura B, Dobnik D, Niderl MH, Filipič M (2011) Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. Environ. Toxicol. Pharmacol. 32(2):296–305

    PubMed  Google Scholar 

  • Zhang C, Wang C, Li W, Wu R, Guo Y, Cheng D, Yang Y, Androulakis IP, Kong A-N (2017) Pharmacokinetics and pharmacodynamics of the triterpenoid ursolic acid in regulating the antioxidant, anti-inflammatory, and epigenetic gene responses in rat leukocytes. Mol Pharm 14(11):3709–3717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Feng J, Cheng B, Lu Q, Chen X (2018) Oleanolic acid protects against oxidative stressinduced human umbilical vein endothelial cell injury by activating AKT/eNOS signaling. Mol Med Rep 18(4):3641–3648. https://doi.org/10.3892/mmr.2018.9354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Chen S, Chen L, Zhang L, Meng F, Sha S, Ai C, Tai J (2019a) Chlorogenic acid ameliorates lead-induced renal damage in mice. Biol Trace Elem Res 189(1):109–117. https://doi.org/10.1007/s12011-018-1508-6

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Zhang J, Zhao C, Lu S, Qiao J, Han M (2019b) The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment. Phytochem Rev 1–19

  • Zhao J-y, Lu Y, Du S-y, Song X, Bai J, Wang Y (2012) Comparative pharmacokinetic studies of borneol in mouse plasma and brain by different administrations. J Zhejiang Univ Sci B 13(12):990–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Han X, Cheng W, Ni J, Zhang Y, Lin J, Song Z (2017) Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol Rep 37(4):2277–2285. https://doi.org/10.3892/or.2017.5450

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49(11):5165–5170. https://doi.org/10.1021/jf010697n

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang Y, Zheng Y, Zhang N (2018) Carnosol protects against renal ischemia-reperfusion injury in rats. Exp Anim 67(4):545–553. https://doi.org/10.1538/expanim.18-0067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Liu P, Wang N, Wang S, Yang B, Li M, Chen J, Situ H, Xie M, Lin Y, Wang Z (2019) Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway. Oxid Med Cell Longev 2019:8781690. https://doi.org/10.1155/2019/8781690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Zhang R, Shi W, Li L, Liu H, Chen Z, Wu L (2020) Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct 11(10):8472–8492

    CAS  PubMed  Google Scholar 

  • Zu G, Zhang R, Yang L, Ma C, Zu Y, Wang W, Zhao C (2012) Ultrasound-assisted extraction of carnosic acid and rosmarinic acid using ionic liquid solution from Rosmarinus officinalis. Int J Mol Sci 13(9):11027–11043. https://doi.org/10.3390/ijms130911027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Vesna Mlinarič Lešnik for the rosemary plant photograph presented in Fig. 1.

Funding

Financial support through the Slovenian Research Agency project grants J1-6736, P2-0046, and L7-8269 as well as through the Slovenian Ministry of Education, Science and Sports program grants C3330-19–952021, F4F, and AB FREE is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urban Bren.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

All authors consented to participate in the development of the work.

Consent for Publication

All authors consented to publish the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lešnik, S., Furlan, V. & Bren, U. Rosemary (Rosmarinus officinalis L.): extraction techniques, analytical methods and health-promoting biological effects. Phytochem Rev 20, 1273–1328 (2021). https://doi.org/10.1007/s11101-021-09745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-021-09745-5

Keywords

Navigation