Skip to main content

Advertisement

Log in

Phytotoxins produced by pathogenic fungi of agrarian plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review, covering the literature from 1965 to present (2018), treats of phytotoxins produced by fungi responsible of heavy diseases of important agrarian crops, including legumes, cereals, fruit trees, vegetables and crops for oil seed production. The symptoms induced on the infected plants are reported and the heavy economical losses caused by the diseases were also described. The chemical characterization and biological activity of the fungal phytotoxins, belonging to the different classes of natural compounds, is reported. In some cases, the probable role played by phytotoxins in the induction of plant disease symptoms is described as well as the results of structure–activity relationship and mode of action studies. The potential application in agriculture and in medicine for some of them is also discussed highlighting the increase in safety and the practical advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas HK, Duke SO (1995) Phytotoxins from plant pathogens as potential herbicides. J Toxicol Toxin Rev 14:523–543

    Article  CAS  Google Scholar 

  • Adesogan EK, Alo BI (1979) Oxysporone, a new metabolite from Fusarium oxysporum. Phytochemistry 18:1886–1887

    Article  CAS  Google Scholar 

  • Alam SS, Bilton JN, Slawin AM et al (1989) Chickpea blight: production of the phytotoxins solanapyrones A and C by Ascochyta rabiei. Phytochemistry 28:2627–2630

    Article  CAS  Google Scholar 

  • Andolfi A, Evidente A, Santini A et al (2006) Ophiobolin A. Acta Crystallogr Sect E Struct Rep Online 62:o2195–o2197

    Article  CAS  Google Scholar 

  • Andolfi A, Cimmino A, Evidente A et al (2009) A new flow cytometry technique to identify Phaeomoniella chlamydospora exopolysaccharides and study mechanisms of esca grapevine foliar symptoms. Plant Dis 93:680–6844

    Article  CAS  PubMed  Google Scholar 

  • Andolfi A, Cimmino A, Villegas-Fernádez AM et al (2013) Lentisone, a new phytotoxic anthraquinone produced by Ascochyta lentis, the causal agent of Ascochyta Blight in Lens culinaris. J Agric Food Chem 61:7301–7308

    Article  CAS  PubMed  Google Scholar 

  • Andolfi A, Maddau L, Cimmino A et al (2014) Lasiojasmonates A–C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry 103:145–153

    Article  CAS  PubMed  Google Scholar 

  • Araújo SS, Beebe S, Crespi M et al (2014) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34(1–3):237–280

    Google Scholar 

  • Au TK, Chick WS, Leung PC (2000) The biology of ophiobolins. Life Sci 67:733–742

    Article  CAS  PubMed  Google Scholar 

  • Ayer WA, Pena-Rodriguez LM (1987a) Metabolites produced by Alternaria brassicae, the black spot pathogen of canola. Part 1, the phytotoxic components. J Nat Prod 50:400–407

    Article  CAS  Google Scholar 

  • Ayer WA, Pena-Rodriguez LM (1987b) Metabolites produced by Alternaria brassicae, the black spot pathogen of canola. Part 2, sesquiterpenoid metabolites. J Nat Prod 50:408–417

    Article  CAS  Google Scholar 

  • Aznar-Fernández T, Cimmino A, Masi M et al (2018) Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid (Acyrthosiphon pisum) as potential biocontrol strategy. Nat Prod Res 29:1–9

    Article  CAS  Google Scholar 

  • Bailey JA, Jeger MJ (1992) Colletotrichum: biology, pathology and control. CAB International, Wallingford

    Google Scholar 

  • Bains PS, Tewari JP (1987) Purification, chemical characterization and host-specificity of the toxin produced by Alternaria brassicae. Physiol Mol Plant Pathol 30:259–271

    Article  CAS  Google Scholar 

  • Bajsa J, Singh K, Nanayakkara D et al (2007) A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds. Biol Pharm Bull 30:1740–1744

    Article  CAS  PubMed  Google Scholar 

  • Balde ES, Andolfi A, Bruyère C et al (2010) Investigations of fungal secondary metabolites with potential anticancer activity. J Nat Prod 73:969–971

    Article  CAS  PubMed  Google Scholar 

  • Ballio A, Graniti A (1991) Phytotoxins and their involvement in plant disease. Experientia 47:751–864

    Article  Google Scholar 

  • Ballio A, Brufani M, Casinovi CG et al (1968) The structure of fusicoccin A. Cell Mol Life Sci 24:631–635

    Article  CAS  Google Scholar 

  • Bani M, Cimmino A, Evidente A et al (2018) Pisatin involvement in the variation of inhibition of Fusarium oxysporum f. sp. pisi spore germination by root exudates of Pisum spp. germplasm. Plant Pathol 67:1046–1054

    Article  CAS  Google Scholar 

  • Barash I, Manulis S, Kashman Y et al (1983) Crystallization and X-ray analysis of stemphyloxin I, a phytotoxin from Stemphylium botryosum. Science 220:1065–1066

    Article  CAS  PubMed  Google Scholar 

  • Barilli E, Cimmino A, Masi M et al (2017) Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid and epi-epoformin. Pest Manag Sci 73:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Baroncelli R, Sanz-Martín JM, Rech GE et al (2014) Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated sorghum. Genome Announc 2:e00540-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Bender CL (1998) Bacterial phytotoxin. Methods Microbiol 27:169–175

    Article  CAS  Google Scholar 

  • Bender CL, Alarcón-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett J, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berestetskiy AO (2008) A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol 44:453

    Article  CAS  Google Scholar 

  • Beuzer P, Axelrod J, Trzoss L et al (2016) Single dish gradient screening of small molecule localization. Org Biomol Chem 14:8241–8245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar-Mathur P, Palit P et al (2012) Grain legumes: biotechnological interventions in crop improvement for adverse environments. In: Tuteja N, Singh Gill S, Tuteja R (eds) Improving crop productivity in sustainable agriculture. Wiley, Weinheim, pp 381–409

    Chapter  Google Scholar 

  • Bhattacharya D, Siddiqui KA, Ali E (1992a) Phytotoxic metabolites of Macrophomina phaseolina. Indian J Mycol Plant Pathol 22:54–57

    CAS  Google Scholar 

  • Bhattacharya D, Dhar TK, Ali E (1992b) An enzyme immunoassay of phaseolinone and its application in estimation of the amount of toxin in Macrophomina phaseolina-infected seeds. Appl Environ Microbiol 58:1970–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bode HB, Walker M, Zeeck A (2000) Structure and biosynthesis of mutolide, a novel macrolide from a UV mutant of the fungus F-24′ 707. Eur J Org Chem 8:1451–1456

    Article  Google Scholar 

  • Bousquet JF, Franqueville HBD, Kollmann A, Fritz R (1980) Action de la septorine, phytotoxine synthetisée par Septoria nodorum, sur la phosphorylation oxydative dans les mitochondries isolées de coleoptiles de blé. Can J Bot 58:2575–2580

    Article  CAS  Google Scholar 

  • Bury M, Girault A, Megalizzi V et al (2013) Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis 4:561

    Article  CAS  Google Scholar 

  • Canonica L, Fiecchi A, Galli Kienle M et al (1966a) The costitution of cochliobolin. Tetrahedron Lett 7:1211–1218

    Article  Google Scholar 

  • Canonica L, Fiecchi A, Galli Kienle M et al (1966b) Isolation and constitution of cochliobolin. Tetrahedron Lett 7:1329–1333

    Article  Google Scholar 

  • Cimmino A, Villegas-Fernández AM, Andolfi A et al (2011) Botrytone, a new naphthalenone pentaketide produced by Botrytis fabae, the causal agent of chocolate spot disease on Vicia faba. J Agric Food Chem 59:9201–9206

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Andolfi A, Fondevilla S et al (2012) Pinolide, a new nonenolide produced by Didymella pinodes, the causal agent of Ascochyta blight on Pisum sativum. J Agric Food Chem 60:5273–5278

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Andolfi A, Avolio F et al (2013) Cyclopaldic acid, seiridin, and sphaeropsidin A as fungal phytotoxins, and larvicidal and biting deterrents against Aedes aegypti (Diptera: Culicidae): structure–activity relationships. Chem Biodiv 10:1239–1251

    Article  CAS  Google Scholar 

  • Cimmino A, Fernández-Aparicio M, Andolfi A et al (2014) Effect of fungal and plant metabolites on broomrapes (Orobanche and Phelipanche spp.) seed germination and radicle growth. J Agric Food Chem 62(43):10485–10492

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Masi M, Evidente M et al (2015a) Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat Prod Rep 32:1629–1653

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Masi M, Evidente M et al (2015b) Fungal phytotoxins with potential herbicidal activity to control Chenopodium album. Nat Prod Commun 10:1119–1126

    PubMed  Google Scholar 

  • Cimmino A, Evidente M, Masi M et al (2015c) Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti (Diptera: Culicidae): structure–activity relationships. Med Chem Res 24:3981–3989

    Article  CAS  Google Scholar 

  • Cimmino A, Masi M, Evidente M et al (2017) Application of Mosher’s method for absolute configuration assignment to bioactive plants and fungi metabolites. J Pharm Biomed Anal 144:59–89

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Nocera P, Linaldeddu BT et al (2018) Phytotoxic metabolites produced by Diaporthella cryptica, the vausal agent of hazelnut branch canker. J Agric Food Chem 66:3435–3442

    Article  CAS  PubMed  Google Scholar 

  • Ciuffetti LM, Tuori RP (1999) Advances in the characterization of the Pyrenophora tritici-repentis-wheat interaction. Phytopathology 89:444–449

    Article  CAS  PubMed  Google Scholar 

  • Coley-Smith JR, Verhoeff K, Jarvis WR (1980) The biology of Botrytis. Academic Press, London

    Google Scholar 

  • Collado IG, Aleu J, Hernández-Galán R et al (2000) Botrytis species an intriguing source of metabolites with a wide range of biological activities. Structure, chemistry and bioactivity of metabolites isolated from Botrytis species. Curr Org Chem 4:1261–1286

    Article  CAS  Google Scholar 

  • Colmenares AJ, Durán-Patrón RM, Hernández-Galán R et al (2002) Four new lactones from Botrytis cinerea. J Nat Prod 65:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Colombo L, Gennari C, Scolastico C et al (1979) Biosynthesis of ascochitine: incorporation studies with advanced precursors. J Chem Soc Chem Commun 11:492–493

    Article  Google Scholar 

  • Colombo L, Gennari C, Ricca GS (1980) Biosynthetic origin and revised structure of ascochitine, a phytotoxic fungal metabolite. Incorporation of [1-13C]-and [1, 2-13C2]-acetates and [Me-13C] methionine. J Chem Soc Perkin Trans 1:675–676

    Article  Google Scholar 

  • Corsaro MM, De Castro C, Evidente A et al (1998a) Phytotoxic extracellular polysaccharide fractions from Cryphonectria parasitica (Murr.) Barr1 strains. Carbohydr Polym 37:167–172

    Article  CAS  Google Scholar 

  • Corsaro MM, De Castro C, Evidente A et al (1998b) Chemical structure of two phytotoxic exopolysaccharides produced by Phomopsis foeniculi. Carbohydr Res 308:349–357

    Article  CAS  PubMed  Google Scholar 

  • Coval SJ, Hradil CM, Lu HS et al (1990) Pyrenoline-A and-B, two new phytotoxins from Pyrenophora teres. Tetrahedron Lett 31:2117–2120

    Article  CAS  Google Scholar 

  • Crouch JA, Beirn LA (2009) Anthracnose of cereals and grasses. Fungal Div 39:19–44

    Google Scholar 

  • Cutler HG, Crumley FG, Cox RH et al (1982) Prehelminthosporol and prehelminthosporol acetate: plant growth regulating properties. J Agric Food Chem 30:658–662

    Article  CAS  Google Scholar 

  • D’mello JPF, Placinta CM, Macdonald AMC (1999) Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol 80:183–205

    Article  Google Scholar 

  • Dahmen-Levinson U, Levinson S, Mallwitz F et al (2006) Fluorescence polarization - a rapid and reliable technique to quantity the Mycotoxin contamination study for zearalenoue (ZON). PP 104. Book of Abstracts. In: International conference on “advances on genomics, biodiversity and rapid systems for detection of toxigenic fungi and mycotooxins”, Monopoli (Bari), Italy, September 26–29

  • de Napoli L, Messere A, Palomba D et al (2000) Studies toward the synthesis of pinolidoxin, a phytotoxic nonenolide from the fungus Ascochyta pinodes. Determination of the configuration at the C-7, C-8, and C-9 chiral centers and stereoselective synthesis of the C6-C18 fragment. J Org Chem 65:3432–3442

    Article  CAS  PubMed  Google Scholar 

  • De Stefano S, Nicoletti R (1999) Pachybasin and chrysophanol, two anthraquinones produced by the fungus Trichoderma aureoviride. Il Tabacco 7:21–24

    Google Scholar 

  • Deighton N, Muckenschnabel I, Colmenares AJ et al (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692

    Article  CAS  PubMed  Google Scholar 

  • Del Sorbo G, Evidente A, Scala F (1994) Production of polyclonal antibodies for cyclopaldic acid, a major phytotoxic metabolite produced by the plant pathogen Seiridium cupressi. Nat Toxins 2:136–140

    Article  CAS  PubMed  Google Scholar 

  • Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50

    Article  CAS  PubMed  Google Scholar 

  • Dhar TK, Siddiqui KA, Ali E (1982) Structure of phaseolinone, a novel phytotoxin from Macrophomina phaseolina. Tetrahedron Lett 23:5459–5462

    CAS  Google Scholar 

  • Dhingra OD, Sinclair JB (1974) Isolation and partial purification of a phytotoxin produced by Macrophomina phaseolina. J Phytopathol 80:35–40

    Article  Google Scholar 

  • Durbin RD (1990) Biochemistry of non-host-selective phytotoxins. In: ACS symposium series. American Chemical Society (USA)

  • Durbin RD (1991) Bacterial phytotoxins: mechanisms of action. Experientia 47:776–783

    Article  CAS  Google Scholar 

  • Duval J, Pecher V, Poujol M et al (2016) Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crops Prod 94:812–833

    Article  CAS  Google Scholar 

  • Evidente A, Motta A (2001) Phytotoxins from fungi, pathogenic for agrarian, forestal and weedy plants. In: Tringali C (ed) Bioactive compounds from natural sources. Taylor & Francis, London, pp 473–526

    Google Scholar 

  • Evidente A, Motta A (2002) Bioactive metabolites from phytopathogenic bacterial and plants. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 2. Elsevier, Amsterdam, pp 581–628

    Google Scholar 

  • Evidente A, Iacobellis NS, Scopa A et al (1990) Isolation of β-phenyllactic acid related compounds from Pseudomonas syringae. Phytochemistry 29:1491–1497

    Article  CAS  Google Scholar 

  • Evidente A, Capasso R, Abouzeid MA et al (1993a) Three new toxic pinolidoxins from Ascochyta pinodes. J Nat Prod 56:1937–1943

    Article  CAS  Google Scholar 

  • Evidente A, Capasso R, Vurro M et al (1993b) Ascosalitoxin, a phytotoxic trisubstituted salicylic aldehyde from Ascochyta pisi. Phytochemistry 34:995–998

    Article  CAS  Google Scholar 

  • Evidente A, Lanzetta R, Capasso R et al (1993c) Pinolidoxin, a phytotoxic nonenolide from Ascochyta pinodes. Phytochemistry 34:999–1003

    Article  CAS  Google Scholar 

  • Evidente A, Lanzetta R, Abouzeid MA et al (1994) Foeniculoxin, a new phytotoxic geranylhydroquinone from Phomopsis foeniculi. Tetrahedron 50:10371–10378

    Article  CAS  Google Scholar 

  • Evidente A, Lanzetta R, Capasso R et al (1995) Putaminoxin, a phytotoxic nonenolide from Phoma putaminum. Phytochemistry 40:1637–1641

    Article  CAS  Google Scholar 

  • Evidente A, Andolfi A, D’Apice L et al (1997a) Identification by flow cytometry of seiridin, one of the main phytotoxins produced by three Seiridium species pathogenic to cypress. Nat Toxins 5:14–19

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Lanzetta R, Capasso R et al (1997b) Putaminoxins B and C from Phoma putaminum. Phytochemistry 44:1041–1045

    Article  CAS  Google Scholar 

  • Evidente A, Capasso R, Andolfi A et al (1998a) Putaminoxins D and E from Phoma putaminum. Phytochemistry 48:941–945

    Article  CAS  Google Scholar 

  • Evidente A, Capasso R, Andolfi A et al (1998b) Structure–activity relationship studies of putaminoxins and pinolidoxins: phytotoxic nonenolides produced by phytopathogenic Phoma and Ascochyta species. Nat Toxins 6:183–188

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A et al (2006a) Herbicidal potential of ophiobolins produced by Drechslera gigantea. J Agric Food Chem 54:1779–1783

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A et al (2006b) Ophiobolin E and 8-epi-ophiobolin J produced by Drechslera gigantea, a potential mycoherbicide of weedy grasses. Phytochemistry 67:2281–2287

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Cimmino A, Berestetskiy A et al (2007) Stagonolides B-F, nonenolides produced by Stagonospora cirsii, a potential mycoherbicide of Cirsium arvense. J Nat Prod 71:31–34

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Cimmino A, Berestetskiy A et al (2008) Stagonolides G-I and modiolide A, nonenolides produced by Stagonospora cirsii, a potential mycoherbicide for Cirsium arvense. J Nat Prod 71:1897–1901

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Abouzeid AM, Andolfi A et al (2011a) Recent achievements in the bio-control of Orobanche infesting important crops in the Mediterranean basin. J Agric Sci Technol 1:461–483

    CAS  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A (2011b) Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 23:674–693

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A (2011c) Fungal phytotoxins for control of Cirsium arvense and Sonchus arvensis. Pest Technol 5:1–7

    Google Scholar 

  • Evidente A, Rodeva R, Andolfi A et al (2011d) Phytotoxic polyketides produced by Phomopsis foeniculi, a strain isolated from diseased Bulgarian fennel. Eur J Plant Pathol 130:173–182

    Article  CAS  Google Scholar 

  • Evidente A, Superchi S, Cimmino A et al (2011e) Regiolone and isosclerone, two enantiomeric phytotoxic naphthalenone pentaketides: computational assignment of absolute configuration and its relationship with phytotoxic activity. Eur J Org Chem 28:5564–5570

    Article  CAS  Google Scholar 

  • Evidente A, Masi M, Linaldeddu BT, Franceschini A, Scanu B, Cimmino A, Andolfi A, Motta A, Maddau L (2012a) Afritoxinones A and B, dihydrofuropyran-2-ones produced by Diplodia africana the causal agent of branch dieback on Juniperus phoenicea. Phytochemistry 77:245–250

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Zonno MC, Andolfi A et al (2012b) Phytotoxic α-pyrones produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight. J Antibiot 65:203–206

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Cimmino A, Andolfi A (2013) The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides. Chirality 25:59–78

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Kornienko A, Cimmino A et al (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627

    Article  CAS  PubMed  Google Scholar 

  • Fajola AO (1978) Cercosporin, a phytotoxin from Cercospora spp. Physiol Plant Pathol 13:157–164

    Article  CAS  Google Scholar 

  • FAO (2017) The future of food and agriculture. Trends and challenges

  • Fernández-Aparicio M, Cimmino A, Evidente A et al (2013) Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals. J Agric Food Chem 61:9797–9803

    Article  CAS  PubMed  Google Scholar 

  • Fogliano V, Marchese A, Scaloni A et al (1998) Characterization of a 60 kDa phytotoxic glycoprotein produced by Phoma tracheiphila and its relation to malseccin. Physiol Mol Plant Pathol 53:149–161

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES et al (2001) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  • Fouillaud M, Venkatachalam M, Girard-Valenciennes E et al (2016) Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs 14:64

    Article  CAS  PubMed Central  Google Scholar 

  • Fürstner A, Radkowski K, Wirtz C et al (2002) Total syntheses of the phytotoxic lactones herbarumin I and II and a synthesis-based solution of the pinolidoxin puzzle. J Am Chem Soc 124:7061–7069

    Article  CAS  PubMed  Google Scholar 

  • Fürstner A, Nagano T, Müller C et al (2007) Total synthesis and evaluation of the actin-binding properties of microcarpalide and a focused library of analogues. Chem Eur J 13:1452–1462

    Article  CAS  PubMed  Google Scholar 

  • Galbraith MN, Whalley WB (1971) The chemistry of fungi. Part LIX. The synthesis of (±)-ascochitine. J Chem Soc C Org 0:3557–3559

    Article  CAS  Google Scholar 

  • Ganassi S, Grazioso P, De Cristofaro A et al (2016) Long chain alcohols produced by Trichoderma citrinoviride have phagodeterrent activity against the bird cherry-oat aphid Rhopalosiphum padi. Front Microbiol 7:297

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Fortanet J, Murga J, Falomir E et al (2005) Stereoselective total synthesis and absolute configuration of the natural decanolides (−)-microcarpalide and (+)-lethaloxin. Identity of (+)-lethaloxin and (+)-pinolidoxin. J Org Chem 70:9822–9827

    Article  CAS  PubMed  Google Scholar 

  • García-Pajón CM, Collado IG (2003) Secondary metabolites isolated from Colletotrichum species. Nat Prod Rep 20:426–431

    Article  PubMed  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 237:812–818

    Article  CAS  Google Scholar 

  • Hallock YF, Clardy J, Kenfield DS et al (1988) De-O-methyldiaporthin, a phytotoxin from Drechslera siccans. Phytochemistry 27:3123–3125

    Article  CAS  Google Scholar 

  • Harwooda JS, Cutler HG, Jacyno JM (1995) Nigrosporolide, a plant growth-inhibiting macrolide from the mould Nigrospora sphaerica. Nat Prod Lett 6:181–185

    Article  Google Scholar 

  • Höhl B, Weidemann C, Höhl U et al (1991) Isolation of solanapyrones A, B and C from culture filture and spore germination fluids of Ascochyta rabiei and aspects of phytotoxin action. J Phytopathol 132:193–206

    Article  Google Scholar 

  • Ichihara A, Oikawa H, Hashimoto M et al (1983a) A phytotoxin, betaenone C, and its related metabolites of Phoma betae Fr. Agric Biol Chem 47:2965–2967

    CAS  Google Scholar 

  • Ichihara A, Oikawa H, Hayashi K et al (1983b) Structures of betaenones A and B, novel phytotoxins from Phoma betae Fr. J Am Chem Soc 105:2907–2908

    Article  CAS  Google Scholar 

  • Ichihara A, Tazaki H, Sakamura S (1983c) Solanapyrones A, B and C, phytotoxic metabolites from the fungus Alternaria solani. Tetrahedron Lett 24:5373–5376

    Article  CAS  Google Scholar 

  • Ichihara A, Oikawa H, Hayashi K (1984a) 3-Deoxyaphidicolin and aphidicolin analogues as phytotoxins from Phoma betae. Agric Biol Chem 48:1687–1689

    CAS  Google Scholar 

  • Ichihara A, Sawamura S, Sakamura S (1984b) Structures of altiloxins A and B, phytotoxins from Phoma asparagi Sacc. Tetrahedron Lett 25:3209–3212

    Article  CAS  Google Scholar 

  • Ichihara A, Sawamura S, Kawakami Y, Sakamura S (1985) Dihydrogladiolic acid another phytotoxin from Phama asparagi Sacc. Agric Biol Chem 49:1891–1892

    CAS  Google Scholar 

  • Inoue Y, Mori R, Takahashi Y et al (2013) Identification and molecular mapping of a wheat gene for resistance to an unadapted isolate of Colletotrichum cereale. Phytopathology 103:575–582

    Article  CAS  PubMed  Google Scholar 

  • Iwai I, Mishima H (1965) Consitution of ascochitine. Chem Ind 73:186–187

    Google Scholar 

  • Jestoi M (2008) Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—a review. Crit Rev Food Sci Nutr 48:21–49

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Kouge A, Nakamura K, Koshino H, Uzawa J, Fujioka S, Kawano T (1998) Pesthetoxin, a new phytotoxin produced by the gray blight fungus, Pestalotiopsis theae. Biosci Biotechnol Biochem 62:1624–1626

    Article  CAS  PubMed  Google Scholar 

  • King JE, Cook RJ, Melville SC (1983) A review of Septoria disease of wheat and barley. Ann Appl Biol 103:345–347

    Article  Google Scholar 

  • Kunwar IK, Singh T, Sinclair JB (1985) Histopathology of mixed infections by Colletotrichum truncatum and Phomopsis spp. or Cercospora sojina in soybean seeds. Phytopathology 75:489–492

    Article  Google Scholar 

  • Locato V, Uzal EN, Cimini S et al (2015) Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. J Exp Bot 66:2991–3000

    Article  CAS  PubMed  Google Scholar 

  • Logrieco A, Moretti A, Solfrizzo M (2009) Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2:129–140

    Article  CAS  Google Scholar 

  • Mahato SB, Siddiqui KA, Bhattacharya G et al (1987) Structure and stereochemistry of phaseolinic acid: a new acid from Macrophomina phaseolina. J Nat Prod 50:245–247

    Article  CAS  Google Scholar 

  • Malaguti G (1990) Half a century of a plant pathologist in a tropical country-Venezuela. Ann Rev Phytopathol 28:1–11

    Article  CAS  Google Scholar 

  • Mancilla G, Jimenez-Teja D, Femenia-Rios M et al (2009) Novel macrolide from wild strains of the phytopathogen fungus Colletotrichum acutatum. Nat Prod Commun 4:395–398

    CAS  PubMed  Google Scholar 

  • Manning VA, Chu AL, Steeves JE et al (2009) A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol Plant Microbe Interact 22:665–676

    Article  CAS  PubMed  Google Scholar 

  • Masi M, Maddau L, Linaldeddu BT et al (2018a) Bioactive metabolites from pathogenic and endophytic fungi of forest trees. Curr Med Chem 25:208–252

    Article  CAS  PubMed  Google Scholar 

  • Masi M, Cimmino A, Reveglia P et al (2018b) Advances on fungal phytotoxins and their role in grapevine trunk diseases. J Agric Food Chem 66:5948–5958

    Article  CAS  PubMed  Google Scholar 

  • Masi M, Nocera P, Boari AM et al (2018c) Lathyroxins A and B, phytotoxic monosubstituted phenols isolated from Ascochyta lentis var. lathyri, a fungal pathogen of grass pea (Lathyrus sativus). J Nat Prod 81:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Masi M, Nocera P, Zonno MC et al (2018d) Lentiquinones A, B, and C, phytotoxic anthraquinone derivatives isolated from Ascochyta lentis, a pathogen of lentil. J Nat Prod 81:2700–2709

    Article  CAS  PubMed  Google Scholar 

  • Masi M, Dasari R, Evidente A et al (2019) Chemistry and biology of ophiobolin A and its congeners. Bioorg Med Chem Lett 29:859–869

    Article  CAS  PubMed  Google Scholar 

  • Mateo R, Medina A, Mateo EM et al (2007) An overview of ochratoxin A in beer and wine. Int J Food Microbiol 119:79–83

    Article  CAS  PubMed  Google Scholar 

  • Matern U, Strobel G, Shepard J (1978) Reaction to phytotoxins in a potato population derived from mesophyll protoplasts. Proc Natl Acad Sci USA 75:4935–4939

    Article  CAS  PubMed  Google Scholar 

  • Mathur SB (1968) Production of toxins and pectolytc enzymes by two isolates of Sclerotium bataticola Taub. and their role in pathogenesis 1. J Phytopathol 62:327–333

    Article  Google Scholar 

  • Mazars C, Rossignol M, Auriol P, Klaebe A (1990) Phomozin, a phytotoxin from Phomopsis helianthi, the causal agent of stem canker of sunflower. Phytochemistry 29:3441–3444

    Article  CAS  Google Scholar 

  • Mazzeo G, Cimmino A, Andolfi A et al (2014) Computational ECD spectrum simulation of the phytotoxin scytalone: importance of solvent effects on conformer populations. Chirality 26:502–508

    Article  CAS  PubMed  Google Scholar 

  • Mishra HN, Das C (2003) A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 43:245–264

    Article  CAS  PubMed  Google Scholar 

  • Mittal S, Davis KR (1995) Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa H, Nagai S, Tsurushima T et al (1994) Phytotoxins produced by the plant pathogenic fungus Bipolaris bicolor El-1. Biosci Biotechnol Biochem 58:1143–1145

    Article  CAS  Google Scholar 

  • Moreau S, Lablache-Combier A, Biguet J et al (1982) Botryodiplodin, a mycotoxin synthesized by a strain of P. roqueforti. J Org Chem 47:2358–2359

    Article  CAS  Google Scholar 

  • Morrison R, Gardiner C, Evidente A et al (2014) Incorporation of ophiobolin A into novel chemoembolization particles for cancer cell treatment. Pharm Res 31:2904–2917

    Article  CAS  PubMed  Google Scholar 

  • Morrison R, Lodge T, Evidente A et al (2017) Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin. Int J Oncol 50:773–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata T, Ando Y (1989) Oxysporone, a phytotoxin isolated from the tea gray blight fungus Pestalotia longiseta. Agric Biol Chem 53:2811

    CAS  Google Scholar 

  • Nagata T, Ando Y, Hirota A (1992) Phytotoxins from tea gray blight fungi, Pestalotiopsis longiseta and Pestalotiopsis theae. Biosci Biotechnol Biochem 56:810–811

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Isomi K, Hamasaki T (1994) Sorokinianin: a novel phytotoxin produced by the phytopathogenic fungus Bipolaris sorokiniana. Tetrahedron Lett 35:9597–9600

    Article  CAS  Google Scholar 

  • Nozoe S, Morisaki M, Tsuda K et al (1965) The structure of ophiobolin, a C25 terpenoid having a novel skeleton. J Am Chem Soc 87:4968–4970

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oikawa H, Yokota T, Sakano C et al (1998) Solanapyrones, phytotoxins produced by Alternaria solani: biosynthesis and isolation of minor components. Biosci Biotechnol Biochem 62:2016–2022

    Article  CAS  PubMed  Google Scholar 

  • Oku H, Nakanishi T (1966) Mode of action of an antibiotic, ascochitine, with reference to selective toxicity. J Phytopathol 55:1–14

    Article  CAS  Google Scholar 

  • Parisi A, Piattelli M, Tringali C et al (1993) Identification of the phytotoxin mellein in culture fluids of Phoma tracheiphila. Phytochemistry 32:865–867

    Article  CAS  Google Scholar 

  • Pedras MSC, Biesenthal CJ (1998) Production of the host-selective phytotoxin phomalide by isolates of Leptosphaeria maculans and its correlation with sirodesmin PL production. Can J Microbiol 44:547–553

    Article  CAS  Google Scholar 

  • Pedras MSC, Yu Y (2009) Phytotoxins, elicitors and other secondary metabolites from phytopathogenic “blackleg” fungi: structure, phytotoxicity and biosynthesis. Nat Prod Commun 4:1291–1304

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Abrams SR, Seguin-Swartz G, Quail JW, Jia Z (1989) Phomalirazine, a novel toxin from the phytopathogenic fungus Phoma lingam. J Am Chem Soc 111:1904–1905

    Article  CAS  Google Scholar 

  • Pedras MSC, Morales VM, Taylor JL (1993) Phomaligols and phomaligadiones: new metabolites from the blackleg fungus. Tetrahedron 49:8317–8322

    Article  Google Scholar 

  • Pedras MSC, Erosa-López CC, Quail JW, Taylor JL (1999) Phomalairdenone: a new host-selective phytotoxin from a virulent type of the blackleg fungus Phoma lingam. Bioorg Med Chem Lett 9:3291–3294

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Chumala PB, Jin W, Islam MS, Hauck DW (2009) The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394–402

    Article  CAS  PubMed  Google Scholar 

  • Pena-Rodriguez LM, Chilton WS (1989) 3-Anhydroophiobolin A and 3-anhydro-6-epi-ophiobolin A, phytotoxic metabolites of the Johnson grass pathogen Bipolaris sorghicola. J Nat Prod 52:1170–1172

    Article  CAS  Google Scholar 

  • Pena-Rodriguez LM, Armingeon NA, Chilton WS (1988) Toxins from weed pathogens, I. Phytotoxins from a Bipolaris pathogen of Johnson grass. J Nat Prod 51:821–828

    Article  CAS  PubMed  Google Scholar 

  • Ponomarenko A, Goodwin SB, Kema GH (2011) Septoria tritici blotch (STB) of wheat. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2011-0407-01

    Article  Google Scholar 

  • Puopolo G, Cimmino A, Palmieri MC et al (2014) Lysobacter capsici AZ78 produces cyclo (L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and P. lasmopara. J Appl Microbiol 117:1168–1180

    Article  CAS  PubMed  Google Scholar 

  • Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus–plant interactions. Front Plant Sci 6:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramezani M, Shier WT, Abbas HK et al (2007) Soybean charcoal rot disease fungus Macrophomina phaseolina in Mississippi produces the phytotoxin (−)-botryodiplodin but no detectable phaseolinone. J Nat Prod 70:128–129

    Article  CAS  PubMed  Google Scholar 

  • Rivero-Cruz JF, García-Aguirre G, Cerda-García-Rojas CM et al (2000) Conformational behavior and absolute stereostructure of two phytotoxic nonenolides from the fungus Phoma herbarum. Tetrahedron 56:5337–5344

    Article  Google Scholar 

  • Rivero-Cruz JF, Macías M, Cerda-García-Rojas CM et al (2003) A new phytotoxic nonenolide from Phoma herbarum. J Nat Prod 66:511–514

    Article  CAS  PubMed  Google Scholar 

  • Rogério F, Ciampi-Guillardi M, Barbieri MCG et al (2017) Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil. J Appl Microbiol 122:402–415

    Article  CAS  PubMed  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • San Gupta R, Chandran RR, Divekar PV (1966) Botryodiplodin—a new antibiotic from Botryodiplodia theobromae. II. Production, isolation and biological properties. Indian J Exp Biol 4:152–153

    CAS  PubMed  Google Scholar 

  • Sarpeleh A, Wallwork H, Catcheside DE et al (2007) Proteinaceous metabolites from Pyrenophora teres contribute to symptom development of barley net blotch. Phytopathology 97:907–915

    Article  CAS  PubMed  Google Scholar 

  • Sarpeleh A, Wallwork H, Tate ME et al (2008) Initial characterisation of phytotoxic proteins isolated from Pyrenophora teres. Physiol Mol Plant Pathol 72:73–79

    Article  CAS  Google Scholar 

  • Sarrocco S, Diquattro S, Avolio F et al (2015) Bioactive metabolites from new or rare fimicolous fungi with antifungal activity against plant pathogenic fungi. Eur J Plant Pathol 142:61–71

    Article  CAS  Google Scholar 

  • Sassa T (1971) Cotylenines, leaf growth substances produced by fungus. Part I. Isolation and characterization of cotylenins. Agric Biol Chem 35:1415–1418

    CAS  Google Scholar 

  • Sassa T, Neguro T, Ueki H (1972) Production and characterization of a new fungal metabolite, cotylenol. Agric Biol Chem 36:2281–2285

    Article  CAS  Google Scholar 

  • Schatzmayr G, Zehner F, Täubel M et al (2006) Microbiologicals for deactivating mycotoxins. Mol Nutr Food Res 50:543–551

    Article  CAS  PubMed  Google Scholar 

  • Schrader KK, Andolfi A, Cantrell CL et al (2010) A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem Biodiv 7:2261–2280

    Article  CAS  Google Scholar 

  • Seo CO, Oh HC, Lee HB et al (2007) Hexaketides from phytopathogenic fungus Paraphaeosphaeria recurvifoliae. Bull Korean Chem Soc 28:1803–1806

    Article  CAS  Google Scholar 

  • Siddiqui KAI, Gupta AK, Paul AK et al (1979) Purification and properties of a heat-resistant exotoxin produced by Macrophomina phaseolina (Tassi) Goid in culture. Experientia 35:1222–1223

    Article  CAS  PubMed  Google Scholar 

  • Sinclair J (1982) Compendium of soyabean diseases. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Stoessl A, Stothers JB (1986) Colletruncoic acid methyl ester, a unique meroterpenoid from Colletotrichum truncatum. Z. Naturforsch C 41:677–680

    Article  CAS  Google Scholar 

  • Strobel GA (1970) A phytotoxic glycopeptide from potato plants infected with Corynebacterium sepedonicum. J Biol Chem 245:32–38

    CAS  PubMed  Google Scholar 

  • Strobel GA (1977) Bacterial phytotoxins. Ann Rev Microbiol 31:205–222

    Article  CAS  Google Scholar 

  • Strobel GA (1982) Phytotoxins. Ann Rev Biochem 51:309–333

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Kenfield D, Bunkers G et al (1991) Phytotoxins as potential herbicides. Experientia 47:819–826

    Article  CAS  Google Scholar 

  • Sugawara F, Strobel GA (1986) (−)-Dihydropyrenophorin, a novel and selective phytotoxin produced by Drechslera avenae. Plant Sci 43:1–5

    Article  CAS  Google Scholar 

  • Sugawara F, Takahashi N, Strobel GA et al (1988) Triticones A and B, novel phytotoxins from the plant pathogenic fungus Drechslera tritici-repentis. J Am Chem Soc 110:4086–4087

    Article  CAS  Google Scholar 

  • Sukno SA, García VM, Shaw BD et al (2008) Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microbiol 74:823–832

    Article  CAS  PubMed  Google Scholar 

  • Tabacchi R, Fkyerat A, Poliart C et al (2000) Phytotoxins from fungi of esca of grapevine. Phytopathol Mediterr 39:156–161

    CAS  Google Scholar 

  • Tian W, Deng Z, Hong K (2017) The biological activities of sesterterpenoid-type ophiobolins. Mar Drugs 15:229

    Article  CAS  PubMed Central  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    Article  PubMed  Google Scholar 

  • Tringali C, Parisi A, Piattelli M et al (1993) Phomenins A and B, bioactive polypropionate pyrones from culture fluids of Phoma tracheiphila. Nat Prod Lett 3:101–106

    Article  CAS  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC et al (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • Türkkan M, Andolfi A, Zonno MC et al (2011) Phytotoxins produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight. Phytopathol Mediterr 50:154–158

    Google Scholar 

  • Van Broekhoven LW, Minderhoud L, Holland GJJ et al (1975) Purification and properties of a phytotoxic glycopeptide from Didymella applanata (Niessl) Sacc. J Phytopathol 83:49–56

    Article  Google Scholar 

  • Vaz-Patto MC, Rubiales D (2014) Lathyrus diversity: available resources with relevance to crop improvement—L. sativus and L. cicera as case studies. Ann Bot 113:895–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatasubbaiah P, Van Dyke CG (1991) Phytotoxins produced by Pestalotiopsis oenotherae, a pathogen of evening primrose. Phytochemistry 30:1471–1474

    Article  CAS  Google Scholar 

  • Vurro M, Ellis BE (1997) Effect of fungal toxins on induction of phenylalanine ammonia-lyase activity in elicited cultures of hybrid poplar. Plant Sci 126:29–38

    Article  CAS  Google Scholar 

  • Vurro M, Zonno MC, Evidente A et al (1992) Isolation of cytochalasins A and B from Ascochyta lathyri. Mycotoxin Res 8:17–20

    Article  CAS  PubMed  Google Scholar 

  • Weiergang I, Ørgensen JHL, Møller IM et al (2002) Optimization of in vitro growth conditions of Pyrenophora teres for production of the phytotoxin aspergillomarasmine A. Physiol Mol Plant Pathol 60:131–140

    Article  CAS  Google Scholar 

  • Weiler EW, Kutchan TM, Gorba T et al (1994) The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett 345:9–13

    Article  CAS  PubMed  Google Scholar 

  • Wrather JA, Anderson TR, Arsyad DM et al (1997) Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Dis 81:107–110

    Article  CAS  PubMed  Google Scholar 

  • Xia XK, Huang HR, She ZG et al (2007) 1H and 13C NMR assignments for five anthraquinones from the mangrove endophytic fungus Halorosellinia sp. (No. 1403). Magn Res Chem 45:1006–1009

    Article  CAS  Google Scholar 

  • Yuzikhin O, Mitina G, Berestetskiy A (2007) Herbicidal potential of stagonolide, a new phytotoxic nonenolide from Stagonospora cirsii. J Agric Food Chem 55:7707–7711

    Article  CAS  PubMed  Google Scholar 

  • Zbyňovská K, Petruška P, Kalafová A et al (2016) Patulin-a contaminant of food and feed: a review. Acta Fytotechn Zootechn 19:64–67

    Article  Google Scholar 

  • Zhu T, Lu Z, Fan J et al (2018) Ophiobolins from the mangrove fungus Aspergillus ustus. J Nat Prod 81:2–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Antonio Evidente is associated to the “Istituto di Chimica Biomolecolare” of CNR, Pozzuoli, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Evidente.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evidente, A., Cimmino, A. & Masi, M. Phytotoxins produced by pathogenic fungi of agrarian plants. Phytochem Rev 18, 843–870 (2019). https://doi.org/10.1007/s11101-019-09624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09624-0

Keywords

Navigation