Skip to main content
Log in

Bacterial phytotoxins: Mechanisms of action

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Many species of phytopathogenic procaryotes produce toxins that appear to function in disease development. The affect the plant in different ways, the end result of which is the elicitation of chlorosis, necrosis, watersoaking, growth abnormalities or wilting. The most extensively studied toxins cause chlorosis. They specifically inhibit diverse enzymes, all critical to the plant cell. This inhibition results in a complex series of metabolic dysfunctions ultimately resulting in symptom expression. Substances causing growth abnormalities consist of known phytohormones and other compounds with plant hormone-like activities, but which have no structural relationship to the known hormones. The former act in the usual manner but, because of their elevated levels and imbalances, the host's regulatory mechanisms are overwhelmed and abnormal growth results (hyperplasia, shoot or root formation); the mechanisms of action of the latter group are unknown. High molecular weight, carbohydrate-containing substances, also acting in unknown ways, cause tissue watersoaking or wilting. Likewise, we know little about toxins causing necrosis except for syringomycin which affects ion transport across the plasmalemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D. O., and Yang, S. F., Methionine metabolism in apple tissue. Plant Physiol.60 (1977) 892–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Backmann, P. A., and DeVay, J. E., Studies on the mode of action and biogenesis of the phytotoxin syringomycin. Physiol. Plant Path.1 (1971) 215–233.

    Article  Google Scholar 

  3. Baldwin, J. E., Otsuka, M., and Wallace, P. M., Synthetic studies of tabtoxin. Tetrahedron42 (1986) 3097 3110.

    Article  CAS  Google Scholar 

  4. Bidwai, A. P., and Takemoto, J. Y., Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides. Proc. natl Acad. Sci.84 (1987) 6755–6759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bidwai, A. P., Zhang, L., Bachmann, R. C., and Takemoto, J. Y., Mechanism of action ofPseudomonas syringae phytotoxin, syringomycin. Plant Physiol.83 (1987) 39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Braun, A. C., A study on the mode of action of the wildfire toxin. Phytopathology45 (1955) 659–664.

    CAS  Google Scholar 

  7. Clayton, E. E., Toxin produced byBacterium tabacum and its relation to host range. J. agric. Res.48 (1934) 411–426.

    CAS  Google Scholar 

  8. Crosthwaite, L. M., and Sheen, S. J., Inhibition of ribulose 1,5-bis-phosphate carboxylase by a toxin isolated fromPseudomonas tabaci. Phytopathology69 (1979) 376–379.

    Article  CAS  Google Scholar 

  9. Durbin, R. D., Chlorosis-inducing pseudomonad toxins: their mechanism of action and structure. in: Morphological and Biochemical Events in Plant Parasite Interaction, pp. 369–385. Eds S. Akai and S. Ouchi. Mochizuke Publ. Co., Tokyo 1971.

    Google Scholar 

  10. Durbin, R. D., Toxins in Plant Disease. Academic Press, New York 1981.

    Google Scholar 

  11. Durbin, R. D., The biochemistry of fungal and bacterial toxins and their modes of action, in: Biochemical Plant Pathology, pp. 137–162. Ed. J. A. Callow. John Wiley & Sons, New York 1983.

    Google Scholar 

  12. Durbin, R. D., and Langston-Unkefer, P. J., The mechanism for self-protection against bacterial phytotoxins. A. Rev. Phytopath.26 (1988) 313–329.

    Article  CAS  Google Scholar 

  13. Elstner, E. F., Hormones and metabolic regulation in disease, in: Biochemical Plant Pathology, pp. 415–431. Ed. J. A. Callow. John Wiley & Sons, New York 1983.

    Google Scholar 

  14. Evidente, A., Jacobellis, N. S., Vellone, R. S., Sisto, A., and Surico, G., 2′-Deoxyzeati-riboside and other cytokinins in culture filtrates ofPseudomonas amygdali. Phytochemistry28 (1989), 2603–2607.

    Article  CAS  Google Scholar 

  15. Frantz, T. A., Peterson, D. M., and Durbin, R. D., Sources of ammonium in oat leaves treated with tabtoxin or methionine sulfoximine. Plant Physiol.69 (1982) 345–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giovanelli, J., Owens, L. D., and Mudd, S. H., Mechanism of inhibition of spinach β-cystathionase by rhizobitoxine. Biochim. biophys. Acta227 (1971) 671–684.

    Article  CAS  PubMed  Google Scholar 

  17. Gnanamacnickam, S. S., Starratt, A. N., and Ward, E. W. B., Evidence for the production of similar toxins byPseudomonas syringae pv.glycinea andPseudomonas syringae pv.phaseolicola. Ca. J. Bot.61 (1983) 3271–3278.

    Google Scholar 

  18. Gonzalez, C. F., DeFay, J. E., and Wakeman, R. J., Syringotoxin: a phytotoxin unique to citrus isolates ofPseudomonas syringae. Physiol. Plant Path.18 (1981) 41–50.

    Article  CAS  Google Scholar 

  19. Graniti, A., The evolution of the toxin concept in plant pathology, in: Phytotoxins in Plant Diseases, pp. 1–15. Eds. R. K. S. Wood, A. Ballio and A. Graniti. Academic Press, New York 1972.

    Google Scholar 

  20. Gross, D. C., and Cody, Y. S., Mechanisms of plant pathogenesis byPseudomonas species. Can. J. Microbiol.31 (1985) 403–410.

    Article  CAS  Google Scholar 

  21. Gross, D. C., and DeVay, J. E., Population dynamics and pathogenesis ofPseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin. Phytopathology67 (1977) 475–483.

    Article  Google Scholar 

  22. Iacobellis, N. S., Evidente, A., and Surico, G., Some disease determinants in the hyperplastic bacterial canker of almond incited byPseudomonas amygdali, in: Phytotoxins and Plant Pathogenesis, pp. 461–463. Eds. A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag, Berlin 1989.

    Chapter  Google Scholar 

  23. Ichihara, A., Shiraishi, K., Sato, H., and Sakamura, S., The structure of coronatine. J. Am. chem. Soc.99 (1977) 636–637.

    Article  CAS  Google Scholar 

  24. Johnson, J., and Murwin, H. F., Experiments on the control of wildfire of tobacco. Wisc. agr. Expt. Sta. Res. Bull.62 (1925) 35 pp.

    Google Scholar 

  25. Jutte, S. M., and Durbin, R. D., Ultrastructural effects of a chlorosis-inducing toxin fromPseudomonas tagetis. Phytopathology69 (1979) 839–842.

    Article  Google Scholar 

  26. Keith, D. D., The absolute configuration of rhizobitoxine. Tetrahedron31 (1975) 2629–2632.

    Article  CAS  Google Scholar 

  27. Kinscherf, T., Coleman, R. H., Barta, T. M., and Willis, D. K., Isolation and characterization of a chromosomal region involved in tabtoxin production in the bean pathogenPseudomonas syringae BR2. J. Bact. (in press).

  28. Klämbt, D., Thies, G., and Skoog, F., Isolation of cytokinins fromCorynebacterium fascians. Proc. natl Acad. Sci.56 (1966) 52–59.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kosuge, T., and Yamada, T., Virulence determinants in plant pathogen interactions, in: Molecular Determinants of Plant Diseases, pp. 171–183. Eds. S. Nishimura, C. P. Vance and N. Doke. Springer-Verlag, Berlin 1987.

    Google Scholar 

  30. Kwok, O. C. H., Ako, H., and Patil, S. S., Inactivation of bean ornithine carbamoyltransferase by phaseolotoxin: effect of phosphate. Biochem. biophys. Res. Commun.89 (1979) 1361–1368.

    Article  CAS  PubMed  Google Scholar 

  31. Levi, C., and Durbin, R. D., The isolation and properties of a tabtoxin-hydrolyzing aminopeptidase from the periplasm ofPseudomonas syringae pv.tabaci. Physiol. molec. Plant Path.28 (1986) 345–352.

    Article  CAS  Google Scholar 

  32. Lukens, J., and Durbin, R. D., Tagetitoxin affects plastid development in seedling leaves of wheat (Triticum aestivum). Planta165 (1985) 311–321.

    Article  CAS  PubMed  Google Scholar 

  33. Mathews, D. E., and Durbin, R. D., Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts andEscherichia coli. J. biol. Chem.265 (1990) 493–498.

    Article  CAS  PubMed  Google Scholar 

  34. Mino, Y., Matsushita, Y., and Sakai, R., Effect of coronatine on stomatal opening in leaves of broadbean and Italian ryegrass. Ann. Phytopath. Soc. Japan53 (1987) 53–55.

    Article  CAS  Google Scholar 

  35. Mitchell, R. E., Structure: bacterial, in: Toxins in Plant Disease, pp. 259–293. Ed. R. D. Durbin. Academic Press, New York 1981.

    Chapter  Google Scholar 

  36. Mitchell, R. E., The relevance of non-host-specific toxins in the expression of virulence by pathogens. A. Rev. Phytopath.22 (1984) 215–245.

    Article  CAS  Google Scholar 

  37. Mitchell, R. E., Biosynthesis and regulations of toxins produced byPseudomonas syringae pv.glycinea (coronatine) andPseudomonas andropogonis (rhizobitoxine), in: Phytotoxins and Plant Pathogenesis, pp. 23–29. Eds. A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag, Berlin 1989.

    Chapter  Google Scholar 

  38. Mitchell, R. E., and Durbin, R. D., Tagetitoxin, a toxin produced byPseudomonas syringae pv.tagetis: purification and partial characterization. Physiol. Plant Path.18 (1981) 157–168.

    Article  CAS  Google Scholar 

  39. Mitchell, R. E., Coddington, J. M., and Young, H., A revised structure for tagetitoxin. Tetrahedron Lett.30 (1989) 501–504.

    Article  CAS  Google Scholar 

  40. Mitchell, R. E., Hale, C. N., and Shanks, J. C., Production of different pathogenic symptoms and different toxins by strains ofPseulomonas syringae pv.tomato not distinguishable by gel-immunodiffusion assay. Physiol. Plant Path.23 (1983) 315–322.

    Article  CAS  Google Scholar 

  41. Moore, R. E., Niemczura, W. P., Kwok, O., and Patil, S. S., Inhibitors of ornithine carbamoyltransferase fromPseudomonas syringae pv.phaseolicola. Revised structure of phaseolotoxin. Tetrahedron Lett.25 (1984) 3931–3934.

    Article  CAS  Google Scholar 

  42. Morris, R. O., Genes specifying auxin and cytokinin biosynthesis in phytopathogens. A. Rev. Plant Physiol.37 (1986) 509–538.

    Article  CAS  Google Scholar 

  43. Mott, K. A., and Takemoto, J. Y., Syringomycin, a bacterial phytotoxin closes stomata. Plant Physiol.90 (1989) 1435–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishiyama, K., Sakai, R., Ezuka, A., Ichihara, A., Shiraishi, K., Ogasawara, M., Sato, H., and Sakamura, S., Phytotoxic effect of coronatine produced byPseudomonas coronafaciens var.atropurpurea on leaves of Italian ryegrass. Ann. phytopath. Soc. Japan42 (1976) 613–614.

    Article  Google Scholar 

  45. Owens, L. D., Toxins in plant disease: structure and mode of action. Science165 (1969) 18–25.

    Article  CAS  PubMed  Google Scholar 

  46. Owens, L. D., Guggenheim, S., and Hilton, J. L., Rhizobium-synthesized phytotoxin: an inhibitor of β-cystathionase inSalmonella typhimurium. Biochim. biophys. Acta158 (1968) 219–225.

    Article  CAS  PubMed  Google Scholar 

  47. Owens, L. D., Lieberman, M., and Kunishi, A., Inhibition of ethylene production by rhizobitoxine. Plant Physiol.48 (1971) 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel, P. N., and Walker, J. C., Changes in free amino acid and amide content of resistant and susceptible beans after injection with haloblight organism. Phytopathol.53 (1963) 522–528.

    CAS  Google Scholar 

  49. Patil, S. S., Toxins produced by phytopathogenic bacteria. A. Rev. Phytopath.12 (1974) 259–279.

    Article  CAS  Google Scholar 

  50. Patil, S. S., Kolattukudy, P. E., and Dimond, A. E., Inhibition of ornithine carbamyl transferase from bean plants by the toxin ofPseudomonas phaseolicola. Plant Physiol.46 (1970) 752–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patil, S. S., Tam, L. Q., and Sakai, W. S., Mode of action of the toxin fromPseudomonas phaseolicola. I. Toxin specificity, chlorosis, and ornithine accumulation. Plant Physiol.49 (1972) 803–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paynter, V. A., and Alconero, R., A specific fluorescent antibody for detection of syringomycin in infected peach tree tissues. Phytopathology69 (1979) 493–496.

    Article  CAS  Google Scholar 

  53. Pegg, G. F., Pathogenic and non-pathogenic microorganisms and insects, in: Hormonal Regulation of Development III, Encyclopedia Plant Physiology, N.S. vol. 11, pp. 599–624. Eds. R. P. Pharis and D. M. Reid. Springer-Verlag, Berlin 1985.

    Google Scholar 

  54. Roberto, F., and Kosuge, T., Phytohormone metabolism inPseudomonas syringae subsp.savastanoi, in: Molecular Biology of Plant Growth Control, pp. 371–380. Eds. J. E. Fox and M. Jacobs. Alan R. Liss, New York 1987.

    Google Scholar 

  55. Rudolph, K., Non-specific toxins, in: Physiological Plant Pathology Encyclopedia Plant Physiology N.S., vol. 4, pp. 270–315. Eds R. Heitefuss and P. H. Williams. Springer-Verlag, Berlin 1976.

    Chapter  Google Scholar 

  56. Rudolph, K. W. E., Gross, M., Neugebauer, M., Hokawat, S., Zachowsky, A., Wydra, K., and Klement, K., Extracellular polysaccharides as determinants of leaf spot diseases caused by pseudomonads and xanthomonads, in: Phytotoxins and Plant Pathogenesis, pp. 177–218. Eds A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag, Berlin 1989.

    Chapter  Google Scholar 

  57. Rudolph, K., and Stahmann, M. A., The accumulation ofl-ornithine in halo-blight injected bean plants (Phaseolus vulgaris L.) induced by the toxin of the pathogenPseudomonas phaseolicola (Burkh.). Phytopath. Z.57 (1966) 29–46.

    Article  CAS  Google Scholar 

  58. Sakai, R., Effects of coronatine on some physiological properties of plant cells. Ann. phytopath. Soc. Japan47 (1951) 35–41.

    Article  Google Scholar 

  59. Sakai, R., Akima, M., Mino, Y., and Emami-Saravi, R., Effect of coronatine on membrane bound adenosine triphosphatase. Ann. Phytopath. Soc. Japan50 (1984) 653–655.

    Article  CAS  Google Scholar 

  60. Sakai, R., Mino, Y., and Hosoi, E., Effect of coronatine on the induction of cell wall degrading enzymes in potato tuber discs. Ann. phytopath. Soc. Japan48 (1982) 52–57.

    Article  Google Scholar 

  61. Sakai, R., Mino, Y., Takachi, M., and Enoki, S., Effect of coronatine on the decomposition of starch grains in the discs of potato tubers. Ann. phytopath. Soc. Japan45 (1979) 596–602.

    Article  Google Scholar 

  62. Sakai, R., Nishiyama, K., Ichihara, A., Shiraishi, K., and Sakamura, S., Studies on the mechanism of physiological activity of coronatine. Effect of coronatine on cell wall extensibility and expansion of potato tuber tissue. Ann. phytopath. Soc. Japan45 (1979) 645–653.

    Article  Google Scholar 

  63. Sakai, R., Nishiyama, K., Ichihara, A., Shiraishi, K., and Sakamura, S., The relation between bacterial toxic action and plant growth regulation, in: Recognition and Specificity in Plant Host-parasite Interactions, pp. 165–179. Eds. J. M. Daly and I. Uritani. Japan Scient. Soc. Press, Tokyo 1979.

    Google Scholar 

  64. Sato, M., Sato, Y., Kato, A., Nishiyama, K., and Sakai, F., Gene library of pCOR1, plasmid involved in coronatine biosynthesis inPseudomonas syringae pv.atropurpurea. Ann. phytopath. Soc. Japan55 (1989) 653–656.

    Article  CAS  Google Scholar 

  65. Segre, A., Bachmann, R. C., Ballio, A., Bossa, F., Grgurina, I., Iacobellis, N. S., Marino, G., Pucci, P., Simmaco, M., and Takemoto, J. Y., The structure of syringomycins A1, E and G. FEBS Lett.255 (1989) 27–31.

    Article  CAS  PubMed  Google Scholar 

  66. Sinden, S. L., and Durbin, R. D., Glutamine synthetase inhibition: the possible mode of action of wildfire toxin fromPseudomonas tabaci. Nature219 (1968) 379–380.

    Article  CAS  PubMed  Google Scholar 

  67. Sinden, S. L., DeVay, J. E., and Backman, P. A., Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced byPseudomonas syringae, and its role in the bacterial canker disease of peach trees. Physiol. Plant Path.1 (1971) 199–213.

    Article  CAS  Google Scholar 

  68. Stewart, W. W., Isolation and proof ofstructure of wildfire toxin. Nature229 (1971) 174–178.

    Article  CAS  PubMed  Google Scholar 

  69. Takalashi, N., Chemistry of Plant Hormones. CRC Press, Florida 1986.

    Google Scholar 

  70. Takemoto, J. Y., Giannini, J. L., Vassey, T., and Briskin, D. P., Syringomycin effects on plasma membrane Ca2+ transport, in: Phytotoxins and Plant Pathogenesis, pp. 167–175. Eds. A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag, Berlin 1989.

    Chapter  Google Scholar 

  71. Tam, L. Q., and Patil, S. S., Mode of action of the toxin fromPseudomonas phaseolicola. Plant Physiol.49 (1972) 808–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taylor, P. A., and Durbin, R. D., The production and properties of chlorosis-inducing toxins from a pseudomonad attacking timothy. Physiol. Plant Path.3 (1973) 9–17.

    Article  CAS  Google Scholar 

  73. Taylor, P. A., Schnoes, H. K., and Durbin, R. D., Characterization of chlorosis-inducing toxins from a plant pathogenicPseudonomas sp. Biochim. biophys. Acta286 (1972) 107–117.

    Article  CAS  PubMed  Google Scholar 

  74. Templeton, M. D., Mitchell, R. E., Sullivan, P. A., and Shepherd, M. G., The inactivation of ornithine transcarbamoylase by Nδ-(N1-sulpho-diaminophosphinyl)-l-ornithine. Biochem. J.228 (1985) 347–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thiemann, K. V., and Sachs, T., The role of cytokinins in the ‘fasciation’ disease caused byCorynebacterium fascians. Am. J. Bot.53 (1966) 731–739.

    Article  Google Scholar 

  76. Thomas, M. D., Langston-Unkefer, P. J., Uchytil, T. F., and Durbin, R. D., Inhibition of glutamine synthetase from pea by tabtoxinine-β-lactam. Plant Physiol.71 (1983) 912–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turner, J. G., activities of ribulose-5-bisphosphate carboxylase and glutamine synthetase in isolated mesophyll cells exposed to tabtoxin. Physiol. molec. Plant Path.29 (1986) 59–68.

    Article  CAS  Google Scholar 

  78. Turner, J. G., Development of the chlorotic symptom caused by tabtoxin, in: Phytotoxins and Plant Pathogenesis, pp. 219–238. Eds A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag, Berlin 1989.

    Chapter  Google Scholar 

  79. Turner, J. G., and Debbage, J. M., Tabtoxin-induced symptoms are associated with the accumulation of ammonia formed during photorespiration. Physiol. Plant Path.20 (1982) 223–233.

    Article  CAS  Google Scholar 

  80. Turner, J. G., and Mitchell, R. E., Association between symptom development and inhibition of ornithine carbamoyl transferase in bean leaves treated with phaseolotoxin. Plant Physiol.79 (1985) 468–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Uchytil, T. F., and Durbin, R. D., Hydrolysis of tabtoxins by plant and bacterial enzymes. Experientia36 (1980) 301–302.

    Article  CAS  Google Scholar 

  82. Van Alfen, N. K., Reassessment of plant wilt toxins. A. Rev. Phytopath.27 (1989) 533–550.

    Article  Google Scholar 

  83. Venis, M., Hormone Binding Sites in Plants. Longman, New York 1985.

    Google Scholar 

  84. Woltz, S. S., Nonparasitic plant pathogens. A. Rev. Phytopath.16 (1978) 403–430.

    Article  Google Scholar 

  85. Woolley, D. W., Schaffner, G., and Braun, A. C., Studies on the structure of the phytopathogenic toxin ofPseudomonas tabaci. J. biol. Chem.215 (1955) 485–493.

    Article  CAS  PubMed  Google Scholar 

  86. Yoder, O. C., Toxins in pathogenesis. A. Rev. Phytopath.18 (1980) 103–129.

    Article  CAS  Google Scholar 

  87. Yu, Y., and Yang, S. F., Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiol.64 (1979) 1074–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, L., and Takemoto, J. Y., Mechanism of action ofPseudomonas syringae phytotoxin, syringomycin. Biochim. biophys. Acta861 (1986) 201–204.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, L., and Takemoto, J. Y., Effects ofPseudomonas syringae phytotoxin, syringomycin, on plasma membrane function ofRhodotorula pilimanae. Phytopathology77 (1987) 297–303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durbin, R.D. Bacterial phytotoxins: Mechanisms of action. Experientia 47, 776–783 (1991). https://doi.org/10.1007/BF01922457

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01922457

Key words

Navigation