Skip to main content
Log in

Metabolic engineering of fatty acid biosynthetic pathway in sesame (Sesamum indicum L.): assembling tools to develop nutritionally desirable sesame seed oil

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Vegetable oils are an essential component of human diet, in terms of their health beneficial roles. Despite their importance, the fatty acid profile of most commonly used edible oil seed crop plants are imbalanced; this skewed ratio of fatty acids in the diet has been shown to be a major reason for the occurrence of cardiovascular and autoimmune diseases. Until recently, it was not possible to exert significant control over the fatty acid composition of vegetable oils derived from different plants. However, the advent of metabolic engineering, knowledge of the genetic networks and regulatory hierarchies in plants have offered novel opportunities to tailor-made the composition of vegetable oils for their optimization in regard to food functionality and dietary requirements. Sesame (Sesamum indicum L.) is one of the ancient oilseed crop in Indian subcontinent but its seed oil is devoid of balanced proportion of ω-6:ω-3 fatty acids. A recent study by our group has shed new lights on metabolic engineering strategies for the purpose of nutritional improvement of sesame seed oil to divert the carbon flux from the production of linoleic acid (C18:2) to α-linolenic acid (C18:3). Apart from that, this review evaluates current understanding of regulation of fatty acid biosynthetic pathways in sesame and attempts to identify the major options of metabolic engineering to produce superior sesame seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACCase:

Acetyl Co-A carboxylase

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

CVD:

Cardiovascular diseases

DAG:

1,2-diacylglycerol

DGAT:

1,2-sn-diacylglycerol acyltransferase

ER:

Endoplasmic reticulum

FA:

Fatty acid

FAD3:

Fatty acid desaturase-3

FAD7:

Fatty acid desaturase-7

FAE:

Fatty acid elongase

FAS:

Fatty acid synthase

FAT:

Fatty acyl-ACP thioesterase

G3P:

Glycerol-3-phosphate

GPAT:

Glycerol-3-phosphate acyltransferase

HDL:

High-density-lipoprotein

KAS:

3-ketoacyl- ACP synthase

LDL:

Low-density-lipoprotein

LEC:

Leafy cotyledon

LPA:

Lysophosphatidic acid

MAT:

Malonyl-CoA-ACP-S-malonyl transferase

MGDG:

Monogalactosyldiacylglycerol

MUFA:

Monounsaturated fatty acid

NADPH:

Nicotinamide adenine dinucleotide phosphate

PA:

Phosphatidic acid

PAP:

Phosphatidic acid phosphatise

PC:

Phosphatidyl choline

PUFA:

Polyunsaturated fatty acids

SAD:

Stearoyl-acyl-carrier protein Δ9-desaturase

SFA:

Saturated fatty acid

TFA:

Trans fat

TAG:

Triacylglycerol

WHO:

World health organization

WRI1:

Wrinkled 1

References

  • Al-Shafeay AF, Ibrahim AS, Nesiem MR et al (2011) Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag1. GM Crops 2:182–192

    Article  PubMed  Google Scholar 

  • Andreu V, Collados R, Testillano SP et al (2007) In situ molecular identification of the plastid ω-3 fatty acid desaturase FAD7 from soybean: evidence of thylakoid membrane localization. Plant Physiol 145:1336–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrianov V, Borisjuk N, Pogrebnyak N et al (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287

  • Ashri A (1989) Sesame. In: Robbelen G, Downey RK, Ashri A (eds) Oil crops of the world: their breeding and utilization. McGraw Hill Pub Comp, New York, pp 375–387

    Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Mendoza MS, To A et al (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Dubreucq B, Miquel M et al (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book. doi:10.1199/tab.0113

  • Baud S, Wuilleme S, To A et al (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947

    Article  CAS  PubMed  Google Scholar 

  • Belide S, Petrie JR, Shrestha P et al (2012) Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Front Plant Sci 3:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Sinha S, Dey P et al (2012) Production of nutritionally desirable fatty acids in seed oil of Indian mustard (Brassica juncea L.) by metabolic engineering. Phytochem Rev 11:197–209

    Article  CAS  Google Scholar 

  • Bhunia RK, Chakraborty A, Kaur R et al (2014) Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Mol Biol 86:351–365

    Article  CAS  PubMed  Google Scholar 

  • Bhunia RK, Chakraborty A, Kaur R et al (2015a) Analysis of fatty acid and lignan composition of Indian germplasm of sesame in terms of their nutritional merits. J Am Oil Chem Soc 92:65–76

  • Bhunia RK, Chakraborty A, Kaur R et al (2015b) Enhancement of α-linolenic acid content in transgenic tobacco seeds by ectopic over-expression of a modified plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamum indicum (In review)

  • Browse J, IMcCourt P, Somerville C (1986) A mutant of Arabidopsis deficient in C16:3 and C18:3, leaf lipids. Plant Physiol 81:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buist PH (2004) Fatty acid desaturases: selecting the dehydrogenation channel. Nat Prod Rep 21:249–262

    Article  CAS  PubMed  Google Scholar 

  • Calder PC, Yaqoob P (2009) Omega-3 polyunsaturated fatty acids and human health outcomes. BioFactors 35:266–272

    Article  CAS  PubMed  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhou XR, Zhang ZJ (2015) Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Rep 34:643–653

  • Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 251:1175–1190

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physol 151:1030–1040

    Article  CAS  Google Scholar 

  • Damude GH, Zhang H, Farrall L et al (2006) Identification of bifunctional Δ12/ω-3 fatty acid desaturases for improving the ratio of ω-3 to ω-6 fatty acids in microbes and plants. Proc Natl Acad Sci 103:9446–9451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De-Lorgeril M, Renaud S, Mamelle N et al (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Dormann P, Voelker TA, Ohlrogge JB (1995) Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long chain acyl-acyl carrier proteins. Arch Biochem Biophys 316:612–618

  • Dyer JM, Mullen RT (2001) Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett 494:44–47

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT Data (2013) Food and agriculture organization of the United Nations. Statistical database. http://faostat3.fao.org/home/E

  • Ferro M, Salvi D, Brugiere S et al (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    CAS  PubMed  Google Scholar 

  • Gunstone F, Harwood JL, Padley FB (1994) The lipid handbook, 2nd edn. Chapman and Hall, London, pp 47–208

    Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56

    Article  PubMed  Google Scholar 

  • Haslam RP, Ruiz-Lopez N, Eastmond P et al (2013) The modification of plant oil composition via metabolic engineering-better nutrition by design. Plant Biotechnol J 11:157–168

    Article  CAS  PubMed  Google Scholar 

  • Hawkins DJ, Kridl JC (1998) Characterization of acyl ACP thioesterase of mangosteen (Garcinia mangostana) seed and high level of stearate production in transgenic canola. Plant J 13:743–752

    Article  CAS  PubMed  Google Scholar 

  • Hirata F, Fujita K, Ishikura Y et al (1996) Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis 122:135–136

    Article  CAS  PubMed  Google Scholar 

  • Hirose N, Inoue T, Nishihara K et al (1991) Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32:629–638

    CAS  PubMed  Google Scholar 

  • Hu FB, van Dam RM, Liu S (2001) Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia 44:805–817

    Article  CAS  PubMed  Google Scholar 

  • Jako C, Kumar A, Wei Y (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physol 126:861–874

    Article  CAS  Google Scholar 

  • Jha JK, Maiti MK, Bhattacharjee A (2006) Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli. Plant Physiol Biochem 44:645–655

  • Jin UH, Lee JW, Chung YS (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941

    Article  CAS  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterase. Plant Cell 7:359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kankaanpaa P, Sutas Y, Salminen S et al (1999) Dietary fatty acids and allergy. Ann Med 31:282–287

    Article  CAS  PubMed  Google Scholar 

  • Ke T, Dong C, Mao H et al (2011) Analysis of expression sequence tags from a full-length-enriched cDNA library of developing sesame seeds (Sesamum indicum). BMC Plant Biol 11:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci 89:2624–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kris-Etherton PM (2010) Trans-fats and coronary heart disease. Crit Rev Food Sci Nutr 50:29–30

    Article  CAS  PubMed Central  Google Scholar 

  • Kris-Etherton PM, Griegera JA, Ethertonb TD (2009) Dietary reference intakes for DHA, EPA. Prostaglandins Leukot Essent Fatty Acids 81:99–104

    Article  CAS  PubMed  Google Scholar 

  • Lardizabal K, Effertz R, Levering C (2008) Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol 148:89–96

  • Li C, Miao H, Wei L (2014) Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS ONE 9:e105757

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HL, Yin ZJ, Xiao L et al (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63:3279–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Napier JA, Clemente TE et al (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22:252–259

    Article  CAS  PubMed  Google Scholar 

  • Martino-Catt SJ, Sachs ES (2008) Editor’s choice series: the next generation of biotech crops. Plant Physiol 147:3–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK et al (2004) Membrane-bound fatty acid desaturases are inserted cotranslationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  CAS  PubMed  Google Scholar 

  • McConn M, Hugly S, Browse J et al (1994) A mutation at the fad8 locus of Arabidopsis identifies a second chloroplast ω-3 desaturase. Plant Physiol 106:1609–1614

  • Mensink RP, Katan MB (1990) Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med 323:439–445

    Article  CAS  PubMed  Google Scholar 

  • Mondal N, Bhat VK, Srivastava SP (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269

    Article  CAS  Google Scholar 

  • Nakai M, Harada M, Nakahara K et al (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51:1666–1670

    Article  CAS  PubMed  Google Scholar 

  • Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:330–337

    Article  CAS  PubMed  Google Scholar 

  • Napier JA, Haslam RP, Beaudoin F et al (2014) Understanding and manipulating plant lipid composition: metabolic engineering leads the way. Curr Opin Plant Biol 19:68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napier JA, Usher S, Haslam RP et al (2015) Transgenic plants as a sustainable, terrestrial source of fish oils. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201400452

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082:1–26

    Article  CAS  PubMed  Google Scholar 

  • Okuley J, Lightner J, Feldmann K et al (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

  • Pathak N, Rai AK, Saha S (2014) Quantitative dissection of antioxidative bioactive components in cultivated and wild sesame germplasm reveals potentially exploitable wide genetic variability. J Crop Sci Biotechnol 17:127–139

    Article  Google Scholar 

  • Petrie JR, Shrestha P, Belide S et al (2014) Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE 9:e85061

    Article  PubMed  PubMed Central  Google Scholar 

  • Poudyal H, Panchal KS, Diwan V et al (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 50:372–387

    Article  CAS  PubMed  Google Scholar 

  • Puttick D, Dauk M, Lozinsky S et al (2009) Overexpression of a FAD3 desaturase increases synthesis of a polymethyleneinterrupted dienoic fatty acid in seeds of Arabidopsis thaliana L. Lipids 44:753–757

    Article  CAS  PubMed  Google Scholar 

  • Qui X, Hong H, MacKenzie SL (2001) Identification of a Δ4 fatty acid desaturase from Thraustochytrium sp. involved in the synthesis of docosahexaenoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276:31561–31566

    Article  Google Scholar 

  • Reynolds K, Taylor MC, Zhou X-R et al (2015) Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front Plant Sci. doi:10.3389/fpls.2015.00164

    Google Scholar 

  • Ruiz-Lopez N, Usher S, Sayanova O et al (2015) Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol 99:143–154

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe DK, Chavan JK, Adsule RN et al (1992) World oilseeds: chemistry, technology and utilization. Van Nostrand Reinhold, New York, pp 140–216

    Google Scholar 

  • Sayanova O, Smith MA, Lapinskas P et al (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta 6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci 94:4211–4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Shanklin J, Somerville C (1991) Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci 88:2510–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B, Allen WB, Zheng P et al (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987

  • Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463

    CAS  PubMed  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP, Cleland LG (eds) (2003) Omega-6/Omega-3 essential fatty acid ratio: the scientific evidence. World Rev Nutr Diet, vol 92. Karger, Basel, pp I–XIII

  • Tapiero A, Ba NG, Couvreur P et al (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56:215–222

    Article  CAS  PubMed  Google Scholar 

  • Thompson GA, Scherer DE, Foxall-Van Aken S et al (1991) Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci 88:2578–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzen JTC (2012) Integral proeins in plant oil bodies. ISRN Bot. doi:10.5402/2012/173954

    Google Scholar 

  • Uzun B, Arslan C, Furat S (2008) Variation in fatty acid compositions, oil content and oil yield in germplasm collection of sesame (Sesamum indicum L.). J Am Oil Chem Soc 85:1135–1142

    Article  CAS  Google Scholar 

  • van Erp H, Kelly AA, Menard G (2014) Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol 165:30–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhercke T, Tahchy AE, Liu Q et al (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12:231–239

    Article  CAS  PubMed  Google Scholar 

  • Velasco L, Goffman FD, Becker HC (1998) Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 45:371–382

    Article  Google Scholar 

  • Venegas-Calerón M, Beaudoin F, Garces R et al (2010a) The sunflower plastidial omega-3 fatty acid desaturase (HaFAD7) contains the signalling determinants required for targeting to, and retention in, the endoplasmic reticulum membrane in yeast but requires co-expressed ferredoxin for activity. Phytochemistry 71:1050–1058

  • Venegas-Calerón M, Sayanova O, Napier JA (2010b) An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49:108–119

  • Voelker TA (1996) Plant acyl-ACP thioesterases: chain-length determining enzymes in plant fatty acid biosynthesis. In: Setlow JK (ed) Genetic engineering, vol 18. Plenum Press, New York, pp 111–133

    Chapter  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yu S, Tong C et al (2014a) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39

  • Wang Z, Huang W, Chang J et al (2014b) Overexpression of SiDGAT1, a gene encoding acyl-CoA: diacylglycerol acyltransferase from Sesamum indicum L. increases oil content in transgenic Arabidopsis and soybean. Plant Cell Tiss Org Cult 119:399–410

  • Wang L, Yu J, Li D et al (2015) Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum. Plant Cell Physiol 56:e2. doi:10.1093/pcp/pcu175

    Article  PubMed  Google Scholar 

  • Weselake RJ, Shah S, Tang M et al (2008) Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot 59:3543–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M et al (1993) Cloning of higher plant ω-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav M, Chaudhary D, Sainger M et al (2010) Agrobacterium tumefaciens mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 103:377–386

    Article  CAS  Google Scholar 

  • Yukawa Y, Takaiwa F, Shoji K et al (1996) Structure and expression of two seed-specific CDNA clones encoding steroyl-acyl carrier protein desaturase from sesame, Sesamum indicum L. Plant Cell Physiol 37:201–205

    Article  CAS  PubMed  Google Scholar 

  • Zampelas A, Paschos G, Rallidis L et al (2003) Linoleic acid to alpha-linolenic acid ratio. From clinical trials to inflammatory markers of coronary artery disease. World Rev Nutr Diet 92:92–108

  • Zhang M, Fan J, Taylor DC et al (2009) DGAT1 and PDAT1 Acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Miao H, Wang L et al (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14:401

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yang XD, Yy Zhang (2014) Changes in oleic Acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. Int J Genomics. doi:10.1155/2014/921950

    Google Scholar 

  • Zhou XR, Callahan DL, Shrestha P et al (2014) Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. Front Plant Sci 5:419

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors gratefully thank Dr. Anirban Chakraborty, The University of Texas Medical Branch (UTMB) for his cooperation and valuable inputs. The critical comments from anonymous reviewer is thankfully acknowledged. Research on sesame is supported by grants from ICAR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kumar Bhunia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, R.K., Kaur, R. & Maiti, M.K. Metabolic engineering of fatty acid biosynthetic pathway in sesame (Sesamum indicum L.): assembling tools to develop nutritionally desirable sesame seed oil. Phytochem Rev 15, 799–811 (2016). https://doi.org/10.1007/s11101-015-9424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9424-2

Keywords

Navigation