Skip to main content
Log in

The genuine structure of alectrol: end of a long controversy

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Alectrol was first isolated from root exudates of cowpea (Vigna unguiculata), a genuine host of a root parasitic weed Striga gesnerioides, as a germination stimulant for seeds of the parasite. The proposed structure, an isomer of strigol, was disproven by chemical synthesis. Recently, another structure, namely orobanchyl acetate, was proposed. Surprisingly, however, the synthetic compound having this proposed structure for alectrol was not active in inducing germination of S. gesnerioides seeds although it was active toward seeds of other root parasitic weeds such as S. hermonthica and Orobanche minor. Detailed studies on 1H NMR, mass and CD spectra of naturally occurring alectrol, re-isolated from cowpea root exudates, revealed that the genuine structure of the germination stimulant is not orobanchyl acetate but its stereoisomer ent-2′-epi-orobanchyl acetate. Accordingly, the structure of natural orobanchol was revised to ent-2′-epi-orobanchol 12 years after a tentative structure of orobanchol was proposed. Strict stereochemical requirements of strigolactones for germination induction of S. gesnerioides seeds, authentic samples of synthetic strigolactones and advanced analytical instruments made the structural assignment possible, thus ending a 20 years controversy concerning the true structure of alectrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P et al (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Brooks DW, Bevinakatti HS, Kennedy E, Hathaway J (1985) The absolute structure of (+)-strigol. J Org Chem 50:628–632

    Article  CAS  Google Scholar 

  • Brown R, Johnson AW, Robinson E, Tyler GJ (1952a) The Striga germination factor. II. Chromatographic purification of crude concentrates. Biochem J 50:596–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown R, Johnson AW, Robinson E, Tyler GJ (1952b) The Orobanche germination factor. 3. Concentration of the factor by counter-current distribution. Biochem J 52:571–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butler LG (1995) In: Dakshini KMM, Einhelling EA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington, pp 158–168

    Google Scholar 

  • Chen VX, Boyer FD, Rareau C, Retailleau P, Vors JP, Beau MJ (2010) Stereochemistry, total synthesis, and biological evaluation of the new plant hormone solanacol. Chemistry 16:13941–13945

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Lour). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Hauck C, Müller S, Shildknecht S (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478

    Article  CAS  Google Scholar 

  • Heide- Jørgensen HS (2008) Parasitic flowering plants. Brill NV, Leiden

    Book  Google Scholar 

  • Hirayama K, Mori K (1999) Synthesis of (+)-strigol and (+)-orobanchol, the germination stimulants, and their stereoisomers by employing lipase-catalyzed asymmetric acetylation as the key step. Eur J Org Chem 1999(9):2211–2217

  • Matsui J, Bando M, Kido M, Takeuchi Y, Mori K (1999a) Synthetic disproof of the structure proposed for alectrol, the germination stimulant from Vigna unguiculata. Eur J Org Chem 1999(9):2195–2199

  • Matsui J, Yokota T, Bando M, Takeuchi Y, Mori K (1999b) Synthesis and structure of orobanchol, the germination stimulant for Orobanche minor. Eur J Org Chem 1999(9):2201–2210

  • Matsuura H, Ohashi K, Sasako H, Tagawa N, Takano Y, Ioka Y et al (2008) Germination stimulants from root exudates of Vigna unguiculata. Plant Growth Regul 54:31–36

    Article  CAS  Google Scholar 

  • Mori K, Matsui J, Bando M, Kido M, Takeuchi Y (1998) Synthetic disproof against the structure proposed for alectrol, the germination stimulant from Vigna unguiculata. Tetrahedron Lett 39:6023–6026

    Article  CAS  Google Scholar 

  • Motonami N, Ueno K, Nakashima H, Nomura S, Mizutani M, Takikawa H, Sugimoto Y (2013) Bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry 93:41–48

    Article  CAS  PubMed  Google Scholar 

  • Müller S, Hauck C, Shildknecht S (1992) Germination stimulants produced by Vigna unguiculata Walp cv Saunders Upright. J Plant Growth Regul 11:77–84

    Article  Google Scholar 

  • Nomura S, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y (2013) Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep 32:829–838

    Article  CAS  PubMed  Google Scholar 

  • Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459

    Article  CAS  PubMed  Google Scholar 

  • Parker C (2012) Parasitic weeds: a world challenge. Weed Sci 60:269–276

    Article  CAS  Google Scholar 

  • Seto Y, Kameoka H, Yamaguchi S, Kyozuka J (2012) Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol 53:1843–1853

    Article  CAS  PubMed  Google Scholar 

  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an entogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci USA 111:1640–1645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siame BP, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem 41:1486–1491

    Article  CAS  Google Scholar 

  • Sugimoto Y, Wigchert SCM, Thuring JWJF, Zwanenburg B (1998) Synthesis of all eight stereoisomers of the germination stimulant sorgolactone. J Org Chem 63:1259–1267

    Article  CAS  Google Scholar 

  • Takikawa H, Jikumaru S, Sugimoto Y, Xie X, Yoneyama K, Sasaki M (2009) Synthetic disproof of the structure proposed for solanacol, the germination stimulant for seeds of root parasitic weeds. Tetrahedron Lett 50:4549–4551

    Article  CAS  Google Scholar 

  • Tsuchiya Y, McCourt P (2009) Strigolactones: a new hormone with a past. Curr Opin Plant Biol 12:556–561

    Article  CAS  PubMed  Google Scholar 

  • Ueno K, Fujiwara M, Nomura S, Mizutani M, Sasaki M, Takikawa H, Sugimoto Y (2011a) Structural requirements of strigolactones for germination induction of Striga gesnerioides seeds. J Agric Food Chem 59:9226–9231

    Article  CAS  PubMed  Google Scholar 

  • Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y (2011b) Ent-2′-epi-Orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem 59:10485–10490

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Welzel P, Rohrig S, Milkova Z (1999) Strigol-type germination stimulants: the C-2′ configuration problem. Chem Commun 20:2017–2022

  • Wigchert SCM, Kuiper E, Boelhouwer GH, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999) Dose-response of seeds of the parasitic weeds, Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen 1. J Agric Food Chem 47:1705–1710

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) 2′-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K (2008a) Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry 69:427–431

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K (2008b) Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrahedron Lett 49:2066–2068

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Hanada Y, Fusegi N, Yamada Y, Ito S et al (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 70:211–215

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K et al (2013) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6:153–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973

    Article  CAS  Google Scholar 

  • Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62

    Article  CAS  PubMed  Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signaling molecules in parasitic weed germination. Pest Manag Sci 65:478–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Emeritus professor Kenji Mori (The University of Tokyo, Japan) for the generous gifts of the synthetic orobanchol isomers, orobanchol (9), 2′-epi-orobanchol (2′-epi-9), 4-epi-orobanchol (4-epi-9) and 4,2′-bisepi-orobanchol (4,2′-bisepi-9). The work was supported, in part, by grants from the Asia Africa Science Platform Program of the Japan Society for the Promotion of Science, JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), and Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (Nos. 11J01777, 23405023, 24658111 and 25292065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, K., Sugimoto, Y. & Zwanenburg, B. The genuine structure of alectrol: end of a long controversy. Phytochem Rev 14, 835–847 (2015). https://doi.org/10.1007/s11101-014-9380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9380-2

Keywords

Navigation