Skip to main content
Log in

Relationship of photosynthetic efficiency and seed-setting rate in two contrasting rice cultivars under chilling stress

  • Original papers
  • Published:
Photosynthetica

Abstract

Low temperature during the vegetative stage affects rice (Oryza sativa L.) seed-setting rate in Heilongjiang province at Northeast China. However, little is known about changes of the photosynthetic rate and physiological response in contrasting rice cultivars during chilling periods. In this study, two rice cultivars with different chilling tolerance were treated with 15°C from June 27 to July 7. The chilling-susceptive cultivar, Longjing11 (LJ11), showed a significant decrease in a ripening rate and seed-setting rate after being treated for four days, whilst chilling-tolerant cultivar, Kongyu131 (KY131), was only slightly affected after 4-d treatment. The photosynthetic activities, chlorophyll contents, and antioxidative enzyme activities in LJ11 decreased significantly along with the chilling treatment. The decrease in ß-carotene contents might play a role as it could cause direct photooxidation of chlorophylls and lead to the inhibition of the photosynthetic apparatus. In the meantime, no significant damage was found in leaves of KY131 from June 27 to July 11. In conclusion, the chilling-tolerance mechanism of rice is tightly related to the photosynthetic rate, metabolism of reactive oxygen species, and scavenging system in the vegetative stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

Chl:

chlorophyll

ETR:

electron transport rate

F0 :

minimal fluorescence level in dark-adapted leaves

F '0 :

minimal fluorescence level in light-adapted leaves

Fm :

maximal fluorescence level in dark-adapted leaves

F 'm :

maximal fluorescence level in light-adapted leaves

Fv :

variable fluorescence level in dark-adapted leaves

F 'v :

variable fluorescence level in light-adapted leaves

Fv/Fm :

maximal efficiency of PSII photochemistry

F 'v /F 'm :

efficiency of excitation energy capture by open PSII reaction centers

KY131:

chilling tolerant cv.

LJ11:

chilling-susceptible cv.

MDA:

malondialdehyde

NBT:

nitroblue tetrazolium

NPQ:

nonphotochemical quenching

POD:

peroxidase

qP:

photochemical quenching coefficient

SOD:

superoxide dismutase

ß-Car:

ß-carotene

ФPSII :

actual photochemical efficiency of PSII

References

  • Alscher R.G., Erturk N., Heath L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.–J. Exp. Bot. 53: 1331–1341, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction.–Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Chia L.S., Thompson J.E., Dumbroff E.B.: Simulation of the effects of leaf senescence on membranes by treatment with paraquat.–Plant Physiol. 67: 415–420, 1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Río L.A., Gómez M., López-Gorgé J.: Catalase and peroxidase activities, chlorophyll and proteins during storage of pea plants of chilling temperatures.–Rev. Esp. Fisiol. 33: 143–148, 1977.

    PubMed  Google Scholar 

  • Guo Z., Ou W., Lu S., Zhong Q.: Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity.–Plant Physiol. Bioch. 44: 828–836, 2006.

    Article  CAS  Google Scholar 

  • Halevy A., Mayak S., Tirosh T. et al.: Opposing effects of abscisic acid on senescence of rose flowers.–Plant Cell. Physiol. 15: 813–821, 1974.

    CAS  Google Scholar 

  • Hodges D.M., Andrews C.J., Johnson D.A., Hamilton R.I.: Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines.–J. Exp. Bot. 48: 1105–1113, 1997.

    Article  CAS  Google Scholar 

  • Hörtensteiner S.: Chlorophyll degradation during senescence.–Annu. Rev. Plant Biol. 57: 55–77, 2006.

    Article  PubMed  Google Scholar 

  • Hung K.T., Kao C.H.: Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves.–J. Plant Physiol. 161: 1347–1357, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Jeong S.W., Choi S.M., Lee D.S. et al.: Differential susceptibility of photosynthesis to light-chilling stress in rice (Oryza sativa L.) depends on the capacity for photochemical dissipation of light.–Mol. Cells 13: 419–428, 2002.

    CAS  PubMed  Google Scholar 

  • Kasamo K., Yamaguchi M., Nakamura Y.: Mechanism of the chilling-induced decrease in proton pumping across the tonoplast of rice cells.–Plant Cell Physiol. 41: 840–849, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Kratsch H., Wise R.: The ultrastructure of chilling stress.–Plant Cell Environ. 23: 337–350, 2000.

    Article  CAS  Google Scholar 

  • Lee D.H., Lee C.B.: Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays.–Plant Sci. 159: 75–85, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Matsumoto T., Lian H.L., Su W.A. et al.: Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.–Plant Cell Physiol. 50: 216–229, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Michaeli R., Philosoph-Hadas S., Riov J., Meir S.: Chillinginduced leaf abscission of Ixora coccinea plants. I. Induction by oxidative stress via increased sensitivity to ethylene.–Physiol. Plantarum 107: 166–173, 1999.

    Article  CAS  Google Scholar 

  • Noctor G.: Keeping a cool head: gene networks underlying chilling-induced male sterility in rice.–Plant Cell Environ. 38: 1252–1254, 2015.

    Article  PubMed  Google Scholar 

  • Prasad T.K., Anderson M.D., Martin B.A., Stewart C.R.: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.–Plant Cell 6: 65–74, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohácek K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships.–Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Rohácek K., Barták M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications.–Photosynthetica 37: 339–363, 1999.

    Article  Google Scholar 

  • Sato Y., Murakami T., Funatsuki H. et al.: Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings.–J. Exp. Bot. 52: 145–151, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Smillie R.M., Nott R.: Assay of chilling injury in wild and domestic tomatoes based on photosystem activity of the chilled leaves.–Plant Physiol. 63: 796–801, 1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K., Aoki N., Matsumura H. et al.: Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets.–Plant Cell Environ. 38: 1255–1274, 2014.

    Article  Google Scholar 

  • Takahashi R., Joshee N., Kitagawa Y.: Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice.–Plant Mol. Biol. 26: 339–352, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Wang L.F., Chen Y.Y.: Photosynthetic characterization changes at different senescence stages in an early senescence mutant of rice Oryza sativa L.–Photosynthetica 49: 140–144, 2011.

    Article  CAS  Google Scholar 

  • Wise R.R., Naylor A.W.: Chilling-enhanced photooxidation: the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure.–Plant Physiol. 83: 272–277, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J., Zhang J., Wang Z. et al.: Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling.–Planta 215: 645–652, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Yang J.C., Li M., Xie X.Z. et al.: Deficiency of phytochrome B alleviates chilling-induced photoinhibition in rice.–Am. J. Bot. 100: 1860–1870, 2013.

    Article  PubMed  Google Scholar 

  • Yang S.D., Seo P.J., Yoon H.K., Park C.M.: The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes.–Plant Cell 23: 2155–2168, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X.S., Pan S.Q., Kuc J.: Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus.–Phytopathology 80: 1295–1299, 1990.

    Article  CAS  Google Scholar 

  • Yu X., Peng Y.H., Zhang M.H. et al.: Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery.–Cell Res. 16: 599–608, 2006.

    Article  PubMed  Google Scholar 

  • Yun K.Y., Park M.R., Mohanty B. et al.: Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress.–BMC Plant Biol. 10: 16, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang K., Xia X., Zhang Y., Gan S.S.: An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.–Plant J. 69: 667–678, 2012a.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T., Zhao X., Wang W. et al.: Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes.–PloS One 7: e43274, 2012b.

    Article  Google Scholar 

  • Zhao B.H., Wang P., Zhang H.X. et al.: Source-sink and grainfilling characteristics of two-line hybrid rice Yangliangyou 6.–Rice Sci. 13: 34–42, 2006.

    Google Scholar 

  • Zhao X.Q., Wang W.S., Zhang F. et al.: Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.).–Rice 6: 23, 2013a.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y., Chan Z., Xing L. et al.: The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling.–Cell Res. 23: 1380–1395, 2013b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S.Q., Zhao H., Liang J.S. et al.: Relationships between phosphatidylglycerol molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition in rice.–J. Integr. Plant Biol. 50: 194–202, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Meng.

Additional information

Acknowledgements: This work was supported by National Science and Technology Support Project (2012BAD20B0304).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LZ., Wang, LM., Xiang, HT. et al. Relationship of photosynthetic efficiency and seed-setting rate in two contrasting rice cultivars under chilling stress. Photosynthetica 54, 581–588 (2016). https://doi.org/10.1007/s11099-016-0648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0648-1

Additional key words

Navigation