Skip to main content
Log in

Response of photosynthetic capacity and antioxidative system of chloroplast in two wucai (Brassica campestris L.) genotypes against chilling stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Chilling stress during the growing season could cause a series of changes in wucai (Brassica campestris L.). WS-1 (chilling-tolerant genotype) and Ta2 (chilling-sensitive genotype) were sampled in present study to explore the chilling tolerance mechanisms. Our results indicated that photosynthetic parameters exhibited lower level in Ta2 than in WS-1 under chilling stress. The rapid chlorophyll fluorescence dynamics curve showed that chilling resulted in a greater inactivation of photosystem II reaction center in Ta2. Reactive oxygen species and malondialdehyde content of chloroplast in Ta2 were higher than WS-1. The ascorbate–glutathione cycle in chloroplast of WS-1 played a more crucial role than Ta2, which was confirmed by higher activities of antioxidant enzymes including Ascorbate peroxidase, Glutathione reductase, Monodehydroascorbate reductase and Dehydroascorbate reductase and higher content of AsA and GSH. In addition, the ultrastructure of chloroplasts in Ta2 was more severely damaged. After low temperature stress, the shape of starch granules in Ta2 changed from elliptical to round and the volume became larger than that of WS-1. The thylakoid structure of Ta2 also became dispersed from the original tight arrangement. Combined with our previous study under heat stress, WS-1 can tolerant both chilling stress and heat stress, which was partly due to a stable photosynthetic system and the higher active antioxidant system in plants, in comparison to Ta2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams WW, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    PubMed  CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2017) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79–93

    PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    CAS  Google Scholar 

  • Badeck F, Rizza F (2015) A combined field/laboratory method for assessment of frost tolerance with freezing tests and chlorophyll fluorescence. Agronomy 5:71–88

    Google Scholar 

  • Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190:360–365

    PubMed  CAS  Google Scholar 

  • Bonnecarrère V, Borsani O, Díaz P, Capdevielle F, Blanco P, Monza J (2011) Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci Int J Exp Plant Biol 180:726–732

    Google Scholar 

  • Costa H, Gallego SM, Tomaro ML (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci 162:939–945

    CAS  Google Scholar 

  • Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y (2017) Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem 118:138–149

    PubMed  CAS  Google Scholar 

  • Dąbrowski P, Pawluśkiewicz B, Baczewska AH (2015) Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. Zemdirbyste-Agriculture 102:305–312

    Google Scholar 

  • Dąbrowski P, Baczewska-Dąbrowska AH, Pawluśkiewicz B, Paunov M, Alexantrov V, Goltsev V, Kalaji MH (2016) Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass. J Photochem Photobiol B Biol 157:22–31

    Google Scholar 

  • Dąbrowski P, Kalaji MH, Baczewska AH, Pawluśkiewicz B, Mastalerczuk G, Borawska-Jarmułowicz B, Paunov M, Goltsev V (2017) Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. J Lumin 183:322–333

    Google Scholar 

  • Dąbrowski P, Baczewska-Dąbrowska AH, Kalaji HM, Goltsev V, Paunov M, Rapacz M, Wójcik-Jagła M, Pawluśkiewicz B, Bąba W, Brestic M (2019) Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. Sensors 19:2736

    Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815

    PubMed  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:507

    Google Scholar 

  • Davar R, Darvishzadeh R, Majd A (2013) Changes in antioxidant systems in sunflower partial resistant and susceptible lines as affected by Sclerotinia sclerotiorum. Biologia 68:821–829

    CAS  Google Scholar 

  • Dietz KJ (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21:1356–1372

    PubMed  CAS  Google Scholar 

  • Ding F, Wang M, Zhang S (2017) Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants. Sci Hortic 214:27–33

    CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49:55–64

    CAS  Google Scholar 

  • Farooq M, Aziz T, Hussain M, Rehman H, Jabran K, Khan MB (2010) Glycinebetaine improves chilling tolerance in hybrid maize. J Agron Crop Sci 194:152–160

    Google Scholar 

  • Feng YL, Cao KF (2005) Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances. Photosynthetica 43:567–574

    CAS  Google Scholar 

  • Fonteyne S, Lootens P, Muylle H, Ende WVD, Swaef TD, Reheul D, Roldan-Ruiz I (2016) Chilling tolerance and early vigour-related characteristics evaluated in two Miscanthus genotypes. Photosynthetica 54:295–306

    Google Scholar 

  • Foyer CH, Graham N (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ghotbiravandi AA, Shahbazi M, Pessarakli M, Shariati M (2016) Monitoring the photosystem II behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient. J Plant Nutr 39:1174–1185

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Google Scholar 

  • Gomes MTG, Luz ACD, Santos MRD, Batitucci MDCP, Silva DM, Falqueto AR (2012) Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci Hortic 142:49–56

    CAS  Google Scholar 

  • Grace SC, Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol 112:1631–1640

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guha A, Sengupta D, Reddy AR (2013) Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J Photochem Photobiol B-Biol 119:71–83

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    PubMed  CAS  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hou W, Sun AH, Chen HL, Yang FS, Pan JL, Guan MY (2016) Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Biol Plant 60:148–154

    CAS  Google Scholar 

  • Huo C, Zhang B, Wang H, Wang F, Liu M, Gao Y, Zhang W, Deng Z, Sun D, Tang W (2016) Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Mol Cell Proteomics 15:1397–1411

    PubMed  PubMed Central  CAS  Google Scholar 

  • İşeri ÖD, Körpe AD, Sahin FI, Haberal M (2013) Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta Physiol Plant 35:1905–1913

    Google Scholar 

  • Jaleel CA, Riadh H, Gopi R, Manivannan P, Inès J, Aljuburi HJ, Zhao CX, Shao HB, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Google Scholar 

  • Jia Y, Zou D, Wang J, Sha H, Liu H, Inayat AM, Sun J, Zheng H, Xia N, Zhao H (2017) Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage. J Plant Growth Regul 36:240–253

    CAS  Google Scholar 

  • Kalaji HN, Rastogi A, Živčák M, Brestic M, Daszkowska-Golec A, Sitko K, Alsharafa KY, Lotfi R, Stypiński P, Samborska IA, Cetner MD (2018) Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56:953–961

    CAS  Google Scholar 

  • Karam EA, Keramat B, Sorbo S, Maresca V, Asrar Z, Mozafari H, Basile A (2017) Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L. Environ Exp Bot 141:161–169

    Google Scholar 

  • Kley J, Heil M, Muck A, Svatos A, Boland W (2010) Isolating intact chloroplasts from small Arabidopsis samples for proteomic studies. Anal Biochem 398:198–202

    PubMed  CAS  Google Scholar 

  • Kutík J, HoláM D, KočováO M, Rothová O, Haisel D, WilhelmováI N, Tichá I (2004) Ultrastructure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress. Photosynthetica 42:447–455

    Google Scholar 

  • Li X, Zhang L (2015) Endophytic infection alleviates Pb2+ stress effects on photosystem II functioning of Oryza sativa leaves. J Hazard Mater 295:79–85

    PubMed  CAS  Google Scholar 

  • Li J, Hu L, Zhang L, Pan X (2015a) Exogenous spermidine is enhancing tomato tolerance to salinity–alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biol 15:303

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Yang P, Gan Y, Yu J, Xie J (2015b) Brassinosteroid alleviates chilling-induced oxidative stress in pepper by enhancing antioxidation systems and maintenance of photosystem II. Acta Physiol Plant 37:222

    Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Liu ZG, Sun WC, Zhao YN, Li XC, Fang Y, Wu JY, Zeng XC, Yang NN, Wang Y, He L (2016) Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russ J Plant Physiol 63:451–460

    CAS  Google Scholar 

  • Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J, Lv J (2017) Sulfur protects pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism. Int J Mol Sci 18:1628

    PubMed Central  Google Scholar 

  • Lu S, Wang CG, Song JH, Zhang H, Wang SS, Yang J (2014) Relationship of major morphological characteristics with low temperature tolerance in savoy. J China Agric Univ 19:95–102

    Google Scholar 

  • Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2010) Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51:190–200

    PubMed  CAS  Google Scholar 

  • Mathur S, Kalaji H, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54:185–192

    CAS  Google Scholar 

  • Mohanty S, Grimm B, Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699

    PubMed  CAS  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nocter G (2010) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    PubMed  CAS  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    PubMed  CAS  Google Scholar 

  • Ou LJ, Wei G, Zhang ZQ, Dai XXZ, Zou X (2015) Effects of low temperature and low irradiance on the physiological characteristics and related gene expression of different pepper species. Photosynthetica 53:85–94

    CAS  Google Scholar 

  • Oukarroum A, Polchtchikov S, Perreault F, Popovic R (2012) Temperature influence on silver nanoparticles inhibitory effect on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Environ Sci Pollut Res Int 19:1755–1762

    PubMed  CAS  Google Scholar 

  • Oustric J, Morillon R, Luro F, Herbette S, Lourkisti R, Giannettini J, Bertia L, Santiniet J (2017) Tetraploid carrizo citrange rootstock (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). J Plant Physiol 214:108–115

    PubMed  CAS  Google Scholar 

  • Parida AK, Jha B (2010) Antioxidative defense potential to salinity in the euhalophyte salicornia brachiata. J Plant Growth Regul 29:137–148

    CAS  Google Scholar 

  • Ploschuk EL, Bado LA, Salinas M, Wassner DF, Windauer LB, Insausti P (2014) Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environ Exp Bot 102:18–26

    CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents. Biochim Biophys Acta 975:384–394

    CAS  Google Scholar 

  • Rao MV, Davis KR (2010) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Google Scholar 

  • Rapacz M, Sasal M, Kalaji HM, Kościelniak Janusz (2015a) Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PLoS ONE 10:e0134820

    PubMed  PubMed Central  Google Scholar 

  • Rapacz M, Sasal M, Wójcik-Jagła M (2015b) Direct and indirect measurements of freezing tolerance: advantages and limitations. Acta Physiol Plant 37:157

    Google Scholar 

  • Rastogi A, Pospíšil P (2012) Production of hydrogen peroxide and hydroxyl radical in potato tuber during the necrotrophic phase of hemibiotrophic pathogen Phytophthora infestans infection. J Photochem Photobiol B Biol 117:202–206

    CAS  Google Scholar 

  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57:209–216

    Google Scholar 

  • Riva-Roveda L, Escale B, Giauffret C, Claire Périlleux (2016) Maize plants can enter a standby mode to cope with chilling stress. BMC Plant Biol 16:212

    PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Google Scholar 

  • Saber SW, Fujimori M, Tase K, Shu-Ichi S (2011) Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassl Sci 57:101–106

    Google Scholar 

  • Sang QQ, Shu S, Shan X, Guo SR, Sun J (2016) Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress. Russ J Plant Physiol 63:645–655

    CAS  Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363:983–988

    PubMed  CAS  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 51:121–124

    Google Scholar 

  • Shan C, Liu R (2017) Exogenous hydrogen peroxide up-regulates the contents of ascorbate and glutathione in the leaves of Vigna radiata (Linn.) Wilczek. exposed to salt stress. Braz J Bot 40:1–7

    Google Scholar 

  • Sihalibeloui O, Elaoufi S, Maouche B, Marco S (2016) Manganese-induced cadmium stress tolerance in rice seedlings: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. CR Biol 339:462–474

    Google Scholar 

  • Silveira JAG, Araújo SAM, Lima JPMS, Viégas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8

    CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. Chlorophyll a Fluorescence 19:321–362

    CAS  Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Mageswari A, Selvakumar G, Sa T (2016) Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. Plos One 11:e0161592

    PubMed  PubMed Central  Google Scholar 

  • Swoczyna T, Kalaji HM, Pietkiewicz S, Borowski J, Zarasjanuszkiewicz E (2010) Photosynthetic apparatus efficiency of eight tree taxa as an indicator of their tolerance to urban environments. Dendrobiology 63:65–75

    CAS  Google Scholar 

  • Venzhik YV, Titov AF, Talanova VV, Miroslavov EA (2014) Ultrastructure and functional activity of chloroplasts in wheat leaves under root chilling. Ultrastructure and functional activity of chloroplasts in wheat leaves under root chilling. Acta Physiol Plant 36:323–330

    CAS  Google Scholar 

  • Wang L, Chen WJ, Wang Q, Eneji AE, Li ZH, Duan LS (2010) Coronatine enhances chilling tolerance in cucumber (Cucumis sativus L.) seedlings by improving the antioxidative defence system. J Agron Crop Sci 195:377–383

    Google Scholar 

  • Wu Z, Shuai L, Jie Z, Wang F, Du Y, Zou S, Li H, Wen D, Huang Y (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 133:1–11

    Google Scholar 

  • Xie S, Nie L, Zheng Y, Wang J, Zhao M, Zhu S, Hou J, Chen G, Wang C, Yuan L (2019) Comparative proteomic analysis reveals that chlorophyll metabolism contributes to leaf color changes in wucai (Brassica campestris L.) responding to cold acclimation. J Proteome Res 18:2478–2492

    PubMed  CAS  Google Scholar 

  • Yang J, Kong Q, Xiang C (2009) Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes. Acta Physiol Plant 31:285–293

    CAS  Google Scholar 

  • Yang DY, Li M, Ma NN, Yang XH, Meng QW (2017) Tomato SlGGP-LIKE gene participates in plant responses to chilling stress and pathogenic infection. Plant Physiol Biochem 112:218–226

    PubMed  CAS  Google Scholar 

  • Yuan L, Tang L, Zhu S, Hou J, Chen G, Liu F, Liu S, Wang C (2017) Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Soc Bot Pol 86:3554

    Google Scholar 

  • Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C (2019) Comparative proteomics indicates that redox homeostasis is involved in high- and low-temperature stress tolerance in a novel wucai (Brassica campestris L.) genotype. Int J Mol Sci 20:3760

    PubMed Central  CAS  Google Scholar 

  • Zhang T, Gong H, Wen X, Lu C (2010) Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. J Plant Physiol 167:951–958

    PubMed  CAS  Google Scholar 

  • Zhao H, Ye L, Wang Y, Zhou X, Yang J, Wang J, Cao K, Zou Z (2016) Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Front Plant Sci 7:1814

    PubMed  PubMed Central  Google Scholar 

  • Zou M, Yuan L, Zhu S, Liu S, Ge J, Wang C (2016) Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai (Brassica campestris L.). Sci Hortic 211:87–94

    Google Scholar 

  • Zou M, Yuan L, Zhu S, Liu S, Ge J, Wang C (2017) Effects of heat stress on photosynthetic characteristics and chloroplast ultrastructure of a heat-sensitive and heat-tolerant cultivar of wucai (Brassica campestris L.). Acta Physiol Plant 39:30

    Google Scholar 

Download references

Acknowledgements

This work was funded by Major Science and Technology Projects of Anhui Province, China (17030701013); National Key R & D Program of China (2017YFD0101803), National Natural Science Foundation of China (No. 31701910).

Author information

Authors and Affiliations

Authors

Contributions

WC, WJ, FR and YL designed the experiment. WJ, FR and YL carried out the experiments and wrote the manuscript. CG and HJ supervised the study and YG, ZM helped perform the experiments. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Chenggang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fang, R., Yuan, L. et al. Response of photosynthetic capacity and antioxidative system of chloroplast in two wucai (Brassica campestris L.) genotypes against chilling stress. Physiol Mol Biol Plants 26, 219–232 (2020). https://doi.org/10.1007/s12298-019-00743-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00743-8

Keywords

Navigation