Skip to main content
Log in

Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China

  • Original Papers
  • Published:
Photosynthetica

Abstract

Little is known about the response of trees to elevated ozone (O3) in the subtropical region of China, where ambient O3 concentrations are high enough to damage plants. In this study, pigment content, gas exchange and chlorophyll (Chl) a fluorescence in leaves of Liriodendron chinense (Hemsl.) Sarg seedlings, a deciduous broadleaf tree species native in subtropical regions, were investigated at 15, 40, and 58 days after O3 fumigation (DAF) at a concentration of 150 mm3 m−3 (E-O3). At the end of experiment, seedlings were harvested for biomass measurement. E-O3 caused visible injuries on the mature leaves e.g. necrotic patches and accelerated early defoliation. Relative to the charcoal-filtered air (CF) treatment, E-O3 significantly decreased shoot and root biomass, pigment content, light-saturated net photosynthesis (P Nsat), stomatal conductance (g s), maximum rate of carboxylation (Vcmax), photochemical quenching coefficient (qp) and effective quantum yield of PSII photochemistry (ΦPSII), and also caused a slight reduction in relative increase of basal diameter. Therefore, L. chinense can be assumed to be an O3-sensitive tree species, which will be threatened by increasing ambient O3 concentrations in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOT40:

the cumulative O3 exposure over a threshold of the 1-h average [O3] of 40 mm3 m−3 during daytime

Car:

carotenoids

CF:

charcoal-filtered air

Chl:

chlorophyll

C i :

intercellular CO2 concentration

DAF:

days after fumigation

E-O3 :

elevated [O3] treatment

Fm′:

maximum fluorescence yield of light-adapted state

Fo′:

minimum fluorescence yield of light-adapted state

Fs :

steady-state fluorescence yield

Fv′/Fm′:

actual photochemical efficiency of PSII in the saturated light

g s :

stomatal conductance

Jmax :

maximum rate of electron transport contributing to RuBP regeneration

O3 :

ozone

P Nsat :

light-saturated photosynthesis

PPFD:

photosynthetic photon flux density

qp :

photochemical quenching coefficient

Vcmax :

maximum rate of carboxylation

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Ashmore, M.R.: Assessing the future global impacts of ozone on vegetation. — Plant Cell Environ. 28: 949–964, 2005.

    Article  CAS  Google Scholar 

  • Bortier, K., Ceulemans, R., De Temmerman, L.: Effects of ozone exposure on growth and photosynthesis of beech seedlings (Fagus sylvatica). — New Phytol. 146: 271–280, 2000.

    Article  CAS  Google Scholar 

  • Broadmeadow, M.: Ozone and forest trees. — New Phytol.139: 123–125, 1998.

  • Davis, D.D., Skelly, J.M.: Growth response of four species of eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. — J. Air Waste Manage Assoc. 42: 309–311, 1992.

    CAS  Google Scholar 

  • Dixon, M., LeThiec, D., Garrec, J.P.: Reactions of Norway spruce and beech trees to 2 years of ozone exposure and episodic drought. — Environ. Exp. Bot. 40: 77–91, 1998.

    Article  Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. — Ann. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Feng, J.G., Xu, Y.T., Chen, Y.T.: [Growth performance of eight native broadleave species on hill country in Southwestern Zhejiang.] — Forest. Res. 12: 438–441, 1999. [In Chin.]

    Google Scholar 

  • Feng, Z.W., Jin, M.H., Zhang, F.Z., Huang, Y.Z.: Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River Delta. — J. Environ. Sci.-China. 15: 360–362, 2003.

    PubMed  CAS  Google Scholar 

  • Feng, Z.Z., Kobayashi, K.: Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. — Atmos. Environ. 43: 1510–1519, 2009.

    Article  CAS  Google Scholar 

  • Feng, Z.Z., Zeng, H.Q., Wang, X.K., Zheng, Q.W., Feng, Z.W.: Sensitivity of Metasequoia glyptostroboides to ozone stress. — Photosynthetica 46: 463–465, 2008.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochem. Biophys. Acta 990: 87–92, 1989.

    CAS  Google Scholar 

  • Harbinson, J., Genty, B., Baker, N.R.: Relationship between the quantum efficiencies of photosystem I and II in pea leaves. — Plant Physiol. 90: 1029–1034, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R.L.: The modification of photosynthetic capacity induced by ozone exposure. — In: Baker, N.R. (ed.): Photosynthesis and the Environment. Pp. 409–433. Kluwer Acad. Publishers, Dordrecht — Boston — London 1996.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007. — The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge 2007.

    Google Scholar 

  • Karnosky, D.F., Skelly, J.M., Percy, K.E., Chappelka, A.H.: Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. — Environ. Pollut. 147: 489–506, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomemberance. — Meth. Enzym. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Long, S.P., Bernacchi, C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. — J. Exp. Bot. 54: 2393–2401, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Manning, W.J.: Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest: progress and an experimental approach. — Environ. Pollut. 137: 443–53, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Matyssek, R., Sandermann, H.: Impact of ozone on trees: an ecophysiological perspective. — Progr. Bot. 64: 349–404, 2003.

    Article  CAS  Google Scholar 

  • Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., Buker, P.: Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. — Global Change Biol. 17: 592–613, 2011.

    Article  Google Scholar 

  • Noormets, A., Sober, A., Pell, E.J., Dickson, R.E., Podila, G.K., Sober, J., Isebrands, J.G., Karnosky, D.F.: Stomatal and nonstomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. — Plant Cell Environ. 24: 327–336, 2001.

    Article  CAS  Google Scholar 

  • Novak, K., Schaub, M., Fuhrer, J., Skelly, J.M., Hug, C., Landolt, W., Bleuler, P., Kräuchi, N.: Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species. — Environ. Pollut. 136: 33–45, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Oksanen, E., Holopainen, T.: Responses of two birch (Betula pendula Roth) clones to different ozone profiles with similar AOT40 exposure. — Atmos. Environ. 35: 5245–5254, 2001.

    Article  CAS  Google Scholar 

  • Paoletti, E., Grulke, N.E.: Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. — Environ. Pollut. 137: 483–493, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti, E.: Ozone and Mediterranean ecology: Plants, people, problems. — Environ. Pollut. 157: 1397–1398, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Reich, P.B.: Quantifying plant response to ozone: a unifying theory. — Tree Physiol. 3: 63–91, 1987.

    PubMed  CAS  Google Scholar 

  • Ribas, A., Peñuelas, J., Elvira, S., Gimeno, B.S.: Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. — Environ. Pollut. 134: 291–300, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ryang, S.Z., Woo, S.Y., Kwon, S.Y., Kim, S.H., Lee, S.H., Kim, K.N., Lee, D.K.: Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone. — Photosynthetica 47: 19–25, 2009.

    Article  CAS  Google Scholar 

  • Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. — Photosynth. Res. 10: 51–62, 1986.

    Article  CAS  Google Scholar 

  • Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. — Plant Cell Environ. 30: 1035–1040, 2007.

    Article  PubMed  CAS  Google Scholar 

  • The Royal Society: Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications. Science Policy Report 15/08. Royal Society, London 2008.

    Google Scholar 

  • Vingarzan, R.: A review of surface ozone background levels and trends. — Atmos. Environ. 38: 3431–3442, 2004.

    Article  CAS  Google Scholar 

  • Wang, X.K., Zheng, Q.W., Yao, F.F, Chen Z, Feng, Z.Z., Manning, W.J.: Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). — Environ. Pollut. 148: 390–395, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wittig, V.E., Ainsworth, E.A., Long, S.P.: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A metaanalytic review of the last 3 decades of experiments. — Plant Cell Environ. 30: 1150–1162, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann, C., Matyssek, R., Pfanz, H., Humar, M.: Effects of ozone on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). — Environ. Pollut. 150: 258–266, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, M., Watanabe, M., Iwasaki, M., Tabe, C., Matsumura, H., Kohno, Y., Izuta, T.: Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. — Trees. 21: 707–718, 2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 30700086) and Tiantong National Station of Forest Ecosystems (XT200707). The authors thank Professor Zongwei Feng for his valuable suggestions on this experiment. We thank Dr. Charles Chen (Japan International Research Center for Agricultural Sciences) for his helps on English improvement. The critical comments of the anonymous reviewers are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. K. Wang or Z. Z. Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W.W., Niu, J.F., Wang, X.K. et al. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China. Photosynthetica 49, 29–36 (2011). https://doi.org/10.1007/s11099-011-0003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-011-0003-5

Additional key words

Navigation